Skip to main content

Advertisement

Log in

Optimum water depth for restoration of Bolboschoenus planiculmis in wetlands in semi-arid regions

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Bolboschoenus planiculmis is a key wetland plant in the semi-arid regions of Songnen Plain, China, providing food and habitat for the endangered Siberian crane. B. planiculmis wetlands are being degraded by water shortages caused by anthropogenic activities and climate changes. However, the vegetation dynamics under hydrological fluctuations have been rarely reported. We conducted a two-year field investigation in B. planiculmis wetlands to determine the vegetation response to water level changes, and a comparative control experiment to examine the restoration effect of supplemental water on degraded community. We found that the community biomass was positively related with water depth under natural conditions, whereas plant diversity and richness were negatively related. The population density, biomass, and root/shoot ratio of B. planiculmis exhibited quadratic relationships with water depth. The optimum ecological threshold of water depth determining B. planiculmis populations was 11.2–36.1 cm. The control experiment demonstrated that water depth at 0–10 cm during the early growing season and 10–25 cm at later growing stages can enhance the dominance of B. planiculmis and help it outcompete other macrophyte species. Understanding the water requirement cycles of B. planiculmis is valuable for guiding water management plans for the rehabilitation of degraded natural wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • An, Y., Y. Gao & S. Z. Tong, 2018. Emergence and growth performance of Bolboschoenus planiculmis varied in response to water level and soil planting depth: implications for wetland restoration using tuber transplantation. Aquatic Botany 148: 10–14.

    Article  Google Scholar 

  • An, Y., Y. Gao, X. H. Liu & S. Z. Tong, 2019. Interactions of soil moisture and plant community properties in meadows restored from abandoned farmlands on the Sanjiang Plain, China. Community Ecology 20(1): 20–27.

    Article  Google Scholar 

  • Begum, M., A. S. Juraimi, R. Amartalingam, A. Bin Man & S. O. B. Rastans, 2006. The effects of sowing depth and flooding on the emergence, survival, and growth of Fimbristylis miliacea (L.) Vahl. Weed Biology and Management 6(3): 157–164.

  • Boar, R. R., 2006. Responses of a fringing Cyperus papyrus L. swamp to changes in water level. Aquatic Botany 84(2): 85–92.

  • Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences 73(1): 1–14.

    Article  CAS  Google Scholar 

  • Byun, C., J. M. Nam & J. G. Kim, 2017. Effects of flooding regime on wetland plant growth and species dominance in a mesocosm experiment. Plant Ecology 218(5): 517–527.

    Article  Google Scholar 

  • Carter, C., J. D. Madsen & G. N. Ervin, 2018. Effects of initial propagule size and water depth on Butomus umbellatus L. growth and vegetative propagation. Aquatic Botany 150: 27–32.

    Article  Google Scholar 

  • Casanova, M. T. & M. A. Brock, 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology 147(2): 237–250.

    Article  Google Scholar 

  • Chen, H. J., M. F. Zamorano & D. Ivanoff, 2010. Effect of flooding depth on growth, biomass, photosynthesis, and chlorophyll fluorescence of Typha domingensis. Wetlands 30(5): 957–965.

    Article  Google Scholar 

  • Cronk, J. K. & M. S. Fennessy, 2001. Wetland Plants: Biology and Ecology. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Dai, X., Z. B. Yu, G. S. Yang & R. R. Wan, 2020. Role of flooding patterns in the biomass production of vegetation in a typical herbaceous wetland, Poyang Lake wetland, China. Frontiers in Plant Science 11: 1547.

    Article  Google Scholar 

  • Daoud-Bouattour, A., M. Bottollier-Curtet, H. F. -B. Jamaa, Z. Ghrabi-Gammar, S. B. Saad-Limam, L. Rhazi & S. D. Muller, 2014. Effects of hydrology on recruitment of Pilularia minuta Durieu (Marsileaceae), an endangered plant of Mediterranean temporary pools. Aquatic Botany 112: 76–83.

    Article  Google Scholar 

  • De Cauwer, B. & D. Reheul, 2009. Impact of land use on vegetation composition, diversity and potentially invasive, nitrophilous clonal species in a wetland region in Flanders. Agronomy for Sustainable Development 29(2): 277–285.

    Article  Google Scholar 

  • De Steven, D., R. R. Sharitz & C. D. Barton, 2010. Ecological outcomes and evaluation of success in passively restored Southeastern depressional wetlands. Wetlands 30(6): 1129–1140.

    Article  Google Scholar 

  • Deegan, B. M., S. D. White & G. G. Ganf, 2007. The influence of water level fluctuations on the growth of four emergent macrophyte species. Aquatic Botany 86(4): 309–315.

    Article  Google Scholar 

  • Deng, C. N., G. X. Zhang & X. L. Pan, 2012. Eco-physiological responses of Phragmites australis to different water depth in Momoge Wetland. Ecologic Science 31(4): 352–356. (In Chinese)

    Google Scholar 

  • Duke, S. T., S. N. Francoeur & K. E. Judd, 2015. Effects of Phragmites australis invasion on carbon dynamics in a freshwater marsh. Wetlands 35(2): 311–321.

    Article  Google Scholar 

  • Dwire, K. A., J. B. Kauffman & J. E. Baham, 2006. Plant species distribution in relation to water-table depth and soil redox potential in Montane riparian meadows. Wetlands 26(1): 131–146.

    Article  Google Scholar 

  • Fleming, J. P. & E. D. Dibble, 2015. Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia 746(1): 23–37.

    Article  Google Scholar 

  • Gauch, H. G., G. B. Chase & R. H. Whittaker, 1974. Ordination of vegetation samples by Gaussian species distributions. Ecology 55(6): 1382–1390.

    Article  Google Scholar 

  • Grace, J. B., 1989. Effects of water depth on Typha latifolia and Typha domingensis. American Journal of Botany 76(5): 762–768.

    Article  Google Scholar 

  • Hong, M. G. & J. G. Kim, 2016. Effects of initial density, nutrient, and water level regime on the seedling survival and growth of Typha orientalis Presl. Journal of Plant Biology 59(4): 369–376.

    Article  CAS  Google Scholar 

  • Hong, M. G., C. Y. Son & J. G. Kim, 2014. Effects of interspecific competition on the growth and competitiveness of five emergent macrophytes in a constructed lentic wetland. Paddy and Water Environment 12: S193–S202.

    Article  Google Scholar 

  • Hussner, A., C. Meyer & J. Busch, 2009. The influence of water level and nutrient availability on growth and root system development of Myriophyllum aquaticum. Weed Research 49: 73–80.

    Article  CAS  Google Scholar 

  • Kim, D. H., H. T. Kim & J. G. Kim, 2013. Effects of water level and soil type on the survival and growth of Persicaria thunbergii during early growth stages. Ecological Engineering 61: 90–93.

    Article  Google Scholar 

  • Konar, M., M. J. Todd, R. Muneepeerakul, A. Rinaldo & I. Rodriguez-Iturbe, 2013. Hydrology as a driver of biodiversity: Controls on carrying capacity, niche formation, and dispersal. Advances in Water Resources 51: 317–325.

    Article  Google Scholar 

  • Li, X. N., J. Q. Li, X. Fang, Y. W. Gong & W. L. Wang, 2016. Case studies of the sponge city program in China. World Environmental and Water Resources Congress: 295–308.

  • Liu, B., M. Jiang, S. Z. Tong, W. G. Zhang, H. T. Wu, Y. Liu & X. G. Lu, 2016. Differential flooding impacts on Echinochloa caudata and Scirpus planiculmis: implications for weed control in wetlands. Wetlands 36(5): 979–984.

    Article  CAS  Google Scholar 

  • Luan, Z. Q., Z. X. Wang, D. D. Yan, G. H. Liu & Y. Y. Xu, 2013. The ecological response of Carex lasiocarpa community in the riparian wetlands to the environmental gradient of water depth in Sanjiang Plain, Northeast China. Scientific World Journal 402067.

  • Magee, T. K. & M. E. Kentula, 2005. Response of wetland plant species to hydrologic conditions. Wetlands Ecology and Management 13: 163–181.

    Article  Google Scholar 

  • Mitsch, W. J. & J. G. Gosselink, 2015. Wetlands. Wiley, New Jersey.

    Google Scholar 

  • Newman S, J. B. Grace & J. W. Koebel, 1996. Effects of nutrients and hydroperiod on Typha, Cladium, and Eleocharis: implications for everglades restoration. Ecological Applications 6(3): 774-783.

    Article  Google Scholar 

  • Overbeek, C. C., S. F. Harpenslager, J. P. van Zuidam, E. E. van Loon, L. P. M. Lamers, M. B. Soons, W. Admiraal, J. T. A. Verhoeven, A. J. P. Smolders, J. G. M. Roelofs & H. G. van der Geest, 2020. Drivers of vegetation development, biomass production and the initiation of peat formation in a newly constructed wetland. Ecosystems, 23(5): 1019–1036.

    Article  CAS  Google Scholar 

  • Pinay, G., J. C. Clement & R. J. Naiman, 2002. Basic principles and ecological consequences of changing water regimes on nitrogen cycling in fluvial systems. Environmental Management 30(4): 481–491.

    Article  PubMed  Google Scholar 

  • Rongoei, P. J. K., J. Kipkemboi, S. T. Kariuki & A. A. van Dam, 2014. Effects of water depth and livelihood activities on plant species composition and diversity in Nyando floodplain wetland, Kenya. Wetlands Ecology and Management 22(2): 177–189.

    Article  Google Scholar 

  • Sorrell, B. K., C. C. Tanner & H. Brix, 2012. Regression analysis of growth responses to water depth in three wetland plant species. Aob Plants pls043.

  • Strand, J. A. & S. E. B. Weisner, 2001. Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum). Journal of Ecology 89(2): 166–175.

    Article  Google Scholar 

  • Tanentzap, A. J., W. G. Lee, A. Monks, K. Ladley, P. N. Johnson, G. M. Rogers, J. M. Comrie, D. A. Clarke & E. Hayman, 2014. Identifying pathways for managing multiple disturbances to limit plant invasions. Journal of Applied Ecology 51: 1015–1023.

    Article  Google Scholar 

  • Terbraak, C. J. F. & C. W. N. Looman, 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65(1): 3–11.

    Article  Google Scholar 

  • Thomaz, S. M., T. A. Pagioro, L. M. Bini & K. J. Murphy, 2006. Effect of reservoir drawdown on biomass of three species of aquatic macrophytes in a large sub-tropical reservoir (Itaipu, Brazil). Hydrobiologia 570: 53–59.

    Article  Google Scholar 

  • Vivian, L. M., R. C. Godfree, M. J. Colloff, C. E. Mayence & D. J. Marshall, 2014. Wetland plant growth under contrasting water regimes associated with river regulation and drought: implications for environmental water management. Plant Ecology 215(9): 997–1011.

    Article  Google Scholar 

  • Wang, L., C. C. Song, J. M. Hu & T. Yang, 2010. Response of regeneration diversity of Carex Lasiocarpa community to different water levels in Sanjiang Plain, China. Chinese Geographical Science 20(1): 37–42.

    Article  Google Scholar 

  • Wang, Y., J. Feng, Q. X. Lin, X. G. Lyu, X. Y. Wang & G. P. Wang, 2013. Effects of crude oil contamination on soil physical and chemical properties in Momoge wetland of China. Chinese Geographical Science 23: 708–715.

    Article  Google Scholar 

  • Wang, P., Q. Zhang, Y. S. Xu & F. H. Yu, 2016. Effects of water level fluctuation on the growth of submerged macrophyte communities. Flora 223: 83–89.

    Article  Google Scholar 

  • Wen, D., Y. M. Hu, Z. P. Xiong, Y. Chang, Y. H. Li, Y. Wang, M. Liu & J. H. Zhu, 2020. Potential suitable habitat distribution and conservation strategy for the Siberian Crane (Grus leucogeranus) at spring stopover sites in Northeastern China. Polish Journal of Environmental Studies 29(5): 3375–3384.

    Article  Google Scholar 

  • Wu, G. L., G. H. Ren, D. Wang, Z. H. Shi & D. Warrington, 2013. Above- and below-ground response to soil water change in an alpine wetland ecosystem on the Qinghai-Tibetan Plateau, China. Journal of Hydrology 476: 120–127.

    Article  CAS  Google Scholar 

  • Xu, X. L., Q. Zhang, Z. Q. Tan, Y. L. Li & X. L. Wang, 2015. Effects of water-table depth and soil moisture on plant biomass, diversity, and distribution at a seasonally flooded wetland of Poyang Lake, China. Chinese Geographical Science 25(6): 739–756.

    Article  Google Scholar 

  • Yuckin, S. & R. Rooney, 2019. Significant increase in nutrient stocks following Phragmites australis invasion of freshwater meadow marsh but not of cattail marsh. Frontiers in Environmental Science 7: 112.

    Article  Google Scholar 

  • Zhang, X. B., K. D. Guo, C. Lu, R. M. Awais, Y. F. Jia, L. Q. Zhong, P. Z. Liu, R. Dong, D. Liu, W. K. Zeng, G. C. Lei & L. Wen, 2020. Effects of origin and water depth on morphology and reproductive modes of the submerged plant Vallisneria natans. Global Ecology and Conservation, 24: e01330.

  • Zhu, G. R., W. Li, M. Zhang, L. Y. Ni & S. R. Wang, 2012. Adaptation of submerged macrophytes to both water depth and flood intensity as revealed by their mechanical resistance. Hydrobiologia 696(1): 77–93.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (2019YFA0607101), the Strategic Priority Research Program of the Chinese Academy of China (XDA23060402), the National Natural Science Foundation of China (41871102; U19A2042; 41771108), and the Science and Technology Development Program of Jilin Province of China (20180201010SF; 20200201016JC).

Author information

Authors and Affiliations

Authors

Contributions

YA and TS: Writing and Editing; ST: Data analysis; YZ and BL: Sample collection. All authors contributed to the writing to additions and comments to the text.

Corresponding author

Correspondence to Tiejun Song.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Informed consent

The author consent to the publication of this article.

Additional information

Handling editor: Chris Joyce

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Y., Song, T., Zhang, Y. et al. Optimum water depth for restoration of Bolboschoenus planiculmis in wetlands in semi-arid regions. Hydrobiologia 849, 13–28 (2022). https://doi.org/10.1007/s10750-021-04704-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04704-9

Keywords

Navigation