Skip to main content

Advertisement

Log in

Macroinvertebrate seedbank survival in pristine and nutrient-enriched intermittent streams and its contribution to flow phase communities

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Intermittent stream research focuses mostly on pristine streams. The impacts of nutrient enrichment on invertebrate communities in these systems thus remains underexplored, especially in temperate climates. This study aimed to compare taxa survival during stream drying within pristine and nutrient-enriched sediment streambeds and to evaluate seedbank contribution for community recovery. Ten dry sediment subsamples were each collected from three streams of each nutrient status type. These were rehydrated for 60 days in laboratory with persisting and hatching invertebrates being recorded. Oligochaetes and molluscs were the most abundant; stoneflies and mayflies were common; caddisflies were represented by only a few specimens. The seedbank comprised of around one-third of taxa recorded during flow phases with slightly higher taxa numbers in nutrient-enriched streams. Moisture content positively affected seedbank taxa richness, while dry period duration decreased it. Taxa richness has a unimodal response to nutrient enrichment, with fine sediment proportion revealing no significant effect. Our results show a richer macroinvertebrate seedbank in drying sediments under moist conditions with mild nutrient enrichment, while raised nutrient levels limited macroinvertebrate survival. These results highlight the crucial role of seedbanks in community recovery of intermittent temperate streams, which will become more common with climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beermann, A. J., V. Elbrecht, S. Karnatz, L. Ma, C. D. Matthaei, J. J. Piggott & F. Leese, 2018. Multiple-stressor effects on stream macroinvertebrate communities: a mesocosm experiment manipulating salinity, fine sediment and flow velocity. Science of the Total Environment 610: 961–971.

    Google Scholar 

  • Beisel, J. N., P. Usseglio-Polatera, S. Thomas & J. C. Moreteau, 1998. Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobiologia 389: 73–88.

    Google Scholar 

  • Bo, T., S. Fenoglio, G. Malacarne, M. Pessino & F. Sgariboldi, 2007. Effects of clogging on stream macroinvertebrates: an experimental approach. Limnologica 37: 186–192.

    Google Scholar 

  • Bohle, H. W., 2000. Anpassungsstrategien ausgewählter Organismen an temporäre Wasserführung-Insekten periodischer Fließgewässer Mitteleuropas. Gewässer ohne Wasser 5: 53–71.

    Google Scholar 

  • Bonada, N., S. Doledec & B. Statzner, 2007. Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biology 13: 1658–1671.

    Google Scholar 

  • Brock, M. A., D. L. Nielsen, R. J. Shiel, J. D. Green & J. D. Langley, 2003. Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshwater Biology 48: 1207–1218.

    Google Scholar 

  • Brown, B. L., 2007. Habitat heterogeneity and disturbance influence patterns of community temporal variability in a small temperate stream. Hydrobiologia 586: 93–106.

    Google Scholar 

  • Bruen, M., A. Rymszewicz, J. O’Sullivan, J. Turner, D. Lawler, E. Conroy & M. Kelly-Quinn, 2017. Sediment Flux-Measurement, Impacts, Mitigation and Implications for River Management in Ireland. University College Dublin, Dublin.

  • Chester, E. T. & B. J. Robson, 2011. Drought refuges, spatial scale and recolonisation by invertebrates in non-perennial streams. Freshwater Biology 56: 2094–2104.

    Google Scholar 

  • Churchel, M. A. & D. P. Batzer, 2006. Recovery of aquatic macroinvertebrate communities from drought in Georgia Piedmont headwater streams. The American midland naturalist 156: 259–272.

    Google Scholar 

  • Crabot, J., M. Polášek, B. Launay, P. Pařil & T. Datry, 2020. Drying in newly intermittent rivers leads to higher variability of invertebrate communities. Freshwater Biology. https://doi.org/10.1111/fwb.13673.

    Article  Google Scholar 

  • Dang, C. K., S. Harrison, M. M. Sturt, P. S. Giller & M. A. Jansen, 2009. Is the elemental composition of stream invertebrates a determinant of tolerance to organic pollution? Journal of the North American Benthological Society 28: 778–784.

    Google Scholar 

  • Datry, T., S. T. Larned, K. M. Fritz, M. T. Bogan, P. J. Wood, E. I. Meyer & A. N. Santos, 2014a. Broad-scale patterns of invertebrate richness and community composition in temporary rivers: effects of flow intermittence. Ecography 37: 94–104.

    Google Scholar 

  • Datry, T., S. T. Larned & K. Tockner, 2014b. Intermittent rivers: a challenge for freshwater ecology. BioScience 64: 229–235.

    Google Scholar 

  • Datry, T., N. Bonada & A. Boulton, 2017. Intermittent rivers and ephemeral streams: ecology and management, 1st ed. Academic Press, San Diego, CA.

    Google Scholar 

  • Davis, S. J., P. E. Mellander, A. M. Kelly, C. D. Matthaei, J. J. Piggott & M. Kelly-Quinn, 2018. Multiple-stressor effects of sediment, phosphorus and nitrogen on stream macroinvertebrate communities. Science of the Total Environment 637: 577–587.

    Google Scholar 

  • Downes, B. J., P. S. Lake, E. S. G. Schreiber & A. Glaister, 1998. Habitat structure and regulation of local species diversity in a stony, upland stream. Ecological Monographs 68: 237–257.

    Google Scholar 

  • Elbrecht, V., A. J. Beermann, G. Goessler, J. Neumann, R. Tollrian, R. Wagner, A. Wlecklik, J. J. Piggott, C. D. Matthaei & F. Leese, 2016. Multiple-stressor effects on stream invertebrates: a mesocosm experiment manipulating nutrients, fine sediment and flow velocity. Freshwater Biology 61: 362–375.

    Google Scholar 

  • Everall, N. C., M. F. Johnson, P. Wood, M. F. Paisley, D. J. Trigg & A. Farmer, 2019. Macroinvertebrate community structure as an indicator of phosphorus enrichment in rivers. Ecological Indicators 107:

    CAS  Google Scholar 

  • Extence, C. A., R. P. Chadd, J. England, M. J. Dunbar, P. J. Wood & E. D. Taylor, 2013. The assessment of fine sediment accumulation in rivers using macro-invertebrate community response. River Research and Applications 29: 17–55.

    Google Scholar 

  • Gafner, K. & C. T. Robinson, 2007. Nutrient enrichment influences the responses of stream macroinvertebrates to disturbance. Journal of the North American Benthological Society 26: 92–102.

    Google Scholar 

  • Hojsgaard, S., U. Halekoh & J. Yan, 2006. The R Package geepack for Generalized Estimating Equations. Journal of Statistical Software 15: 1–11.

    Google Scholar 

  • Hothorn, T., B. Frank & P. Westfall, 2008. Simultaneous Inference in General Parametric Models. Biometrical Journal 50: 346–363.

    PubMed  Google Scholar 

  • Ionita, M., L. Tallaksen, D. Kingston, J. Stagge, G. Laaha, H. Van Lanen, P. Scholz, S. M. Chelcea & K. Haslinger, 2017. The European 2015 drought from a climatological perspective. Hydrology and Earth System Sciences 21: 1397–1419.

    Google Scholar 

  • Kaster, J. L. & J. H. Bushnell, 1981. Cyst formation by Tubifex tubifex (Tubificidae). Transactions of the American Microscopical Society 100: 34–41.

    Google Scholar 

  • Kokeš, J., S. Zahrádková, D. Němejcová, J. Hodovský, J. Jarkovský & T. Soldán, 2006. The PERLA system in the Czech Republic: a multivariate approach for assessing the ecological status of running waters. Hydrobiologia 566: 343–354.

    Google Scholar 

  • Larned, S. T., T. Datry & C. T. Robinson, 2007. Invertebrate and microbial responses to inundation in an ephemeral river reach in New Zealand: effects of preceding dry periods. Aquatic Sciences 69: 554–567.

    Google Scholar 

  • Larned, S. T., T. Datry, D. B. Arscott & K. Tockner, 2010. Emerging concepts in temporary-river ecology. Freshwater Biology 55: 717–738.

    Google Scholar 

  • Leigh, C., A. J. Boulton, J. L. Courtwright, K. Fritz, C. L. May, R. H. Walker & T. Datry, 2016. Ecological research and management of intermittent rivers: an historical review and future directions. Freshwater Biology 61: 1181–1199.

    Google Scholar 

  • Loskotová, B., M. Straka & P. Pařil, 2019. Sediment characteristics influence benthic macroinvertebrate vertical migrations and survival under experimental water loss conditions. Fundamental and Applied Limnology/Archiv für Hydrobiologie 193: 39–49.

    Google Scholar 

  • Mantyka-Pringle, C. S., T. G. Martin & J. R. Rhodes, 2012. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biology 18: 1239–1252.

    Google Scholar 

  • Matthaei, C. D., F. Weller, D. W. Kelly & C. R. Townsend, 2006. Impacts of fine sediment addition to tussock, pasture, dairy and deer farming streams in New Zealand. Freshwater Biology 51: 2154–2172.

    Google Scholar 

  • Matthaei, C. D., J. J. Piggott & C. R. Townsend, 2010. Multiple stressors in agricultural streams: interactions among sediment addition, nutrient enrichment and water abstraction. Journal of Applied Ecology 47: 639–649.

    Google Scholar 

  • Montalto, L. & M. Marchese, 2005. Cyst formation in Tubificidae (Naidinae) and Opistocystidae (Annelida, Oligochaeta) as an adaptive strategy for drought tolerance in fluvial wetlands of the Paraná River, Argentina. Wetlands 25: 488–494.

    Google Scholar 

  • Niyogi, D. K., M. Koren, C. J. Arbuckle & C. R. Townsend, 2007. Stream communities along a catchment land-use gradient: subsidy-stress responses to pastoral development. Environmental management 39: 213–225.

    PubMed  Google Scholar 

  • O’Connor, N. A., 1991. The effects of habitat complexity on the macroinvertebrates colonising wood substrates in a lowland stream. Oecologia 85: 504–512.

    PubMed  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, R. P. Minchin, R. B. O’Hara, G. L. Simpson, P. M. Solymos, H. H. Stevens, E. Szoecs & H. Wagner, 2019. vegan: Community Ecology Package. R package version 2.5-6. Retrieved from https://CRAN.R-project.org/package=vegan.

  • Packman, A. I. & J. S. MacKay, 2003. Interplay of stream-subsurface exchange, clay particle deposition, and streambed evolution. Water Resources Research 39: 1097.

    Google Scholar 

  • Pařil, P., C. Leigh, M. Polášek, R. Sarremejane, P. Řezníčková, A. Dostálová & R. Stubbington, 2019a. Short-term streambed drying events alter amphipod population structure in a central European stream. Fundamental and Applied Limnology/Archiv für Hydrobiologie 193: 51–64.

    Google Scholar 

  • Pařil, P., M. Polášek, B. Loskotová, M. Straka, J. Crabot & T. Datry, 2019b. An unexpected source of invertebrate community recovery in intermittent streams from a humid continental climate. Freshwater Biology 64: 1971–1983.

    Google Scholar 

  • Peel, M. C., B. L. Finlayson & T. A. McMahon, 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 1633–1644.

    Google Scholar 

  • Philipp, A. & R. B. Forster, 2000. Die Rekolonisationsdynamik der wirbellosen Bodenfauna eines intermittierenden Flysch-Wienerwaldbaches. Wissenschaftliche Mitteilungen aus dem Niederösterreichischen Landesmuseum 13: 7–30.

    Google Scholar 

  • Piggott, J. J., K. Lange, C. R. Townsend & C. D. Matthaei, 2012. Multiple stressors in agricultural streams: a mesocosm study of interactions among raised water temperature, sediment addition and nutrient enrichment. PloS one 7:

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar & R Core Team, 2020. nlme: Linear and nonlinear mixed effects models. R package version 3.1–148. Retrieved from https://CRAN.R-project.org/package=nlme

  • Poznańska, M., T. Kakareko, M. Krzyżyński & J. Kobak, 2013. Effect of substratum drying on the survival and migrations of Ponto-Caspian and native gammarids (Crustacea: Amphipoda). Hydrobiologia 700: 47–59.

    Google Scholar 

  • Poznańska, M., T. Kakareko, T. Gulanicz, Ł. Jermacz & J. Kobak, 2015. Life on the edge: survival and behavioural responses of freshwater gill-breathing snails to declining water level and substratum drying. Freshwater Biology 60: 2379–2391.

    Google Scholar 

  • Poznańska, M., D. Werner, I. Jabłońska-Barna, T. Kakareko, K. U. Duong, A. Dzierżyńska-Białończyk & J. Kobak, 2017. The survival and behavioural responses of a near-shore chironomid and oligochaete to declining water levels and sandy substratum drying. Hydrobiologia 788: 231–244.

    Google Scholar 

  • Poznańska-Kakareko, M., M. Budka, J. Żbikowski, M. Czarnecka, T. Kakareko, Ł. Jermacz & J. Kobak, 2017. Survival and vertical distribution of macroinvertebrates during emersion of sandy substratum in outdoor mesocosms. Fundamental and Applied Limnology/Archiv für Hydrobiologie 190: 29–47.

    Google Scholar 

  • R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/.

  • Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace & R. C. Wissmar, 1988. The role of disturbance in stream ecology. Journal of the North American benthological society 7: 433–455.

    Google Scholar 

  • Robson, B. J., E. T. Chester & C. M. Austin, 2011. Why life history information matters: drought refuges and macroinvertebrate persistence in non-perennial streams subject to a drier climate. Marine and Freshwater Research 62: 801–810.

    CAS  Google Scholar 

  • Sabater, S., J. Artigas, A. Gaudes, I. Munoz, G. Urrea & A. M. Romani, 2011. Long-term moderate nutrient inputs enhance autotrophy in a forested Mediterranean stream. Freshwater Biology 56: 1266–1280.

    CAS  Google Scholar 

  • Steward, A. L., D. von Schiller, K. Tockner, J. C. Marshall & S. E. Bunn, 2012. When the river runs dry: human and ecological values of dry riverbeds. Frontiers in Ecology and the Environment 10: 202–209.

    Google Scholar 

  • Storey, R. G. & J. M. Quinn, 2013. Survival of aquatic invertebrates in dry bed sediments of intermittent streams: temperature tolerances and implications for riparian management. Freshwater Science 32: 250–266.

    Google Scholar 

  • Strachan, S. R., E. T. Chester & B. J. Robson, 2015. Freshwater invertebrate life history strategies for surviving desiccation. Springer Science Reviews 3: 57–75.

    Google Scholar 

  • Straka, M., M. Polášek, V. Syrovátka, R. Stubbington, S. Zahrádková, D. Němejcová, L. Šikulová, P. Řezníčková, L. Opatřilová, T. Datry & P. Pařil, 2019. Recognition of stream drying based on benthic macroinvertebrates: a new tool in Central Europe. Ecological Indicators 106:

    Google Scholar 

  • Stubbington, R. & T. Datry, 2013. The macroinvertebrate seedbank promotes community persistence in temporary rivers across climate zones. Freshwater Biology 58: 1202–1220.

    Google Scholar 

  • Stubbington, R. & P. J. Wood, 2013. Benthic and interstitial habitats of a lentic spring as invertebrate refuges during supra-seasonal drought. Fundamental and Applied Limnology/Archiv für Hydrobiologie 182: 61–73.

    Google Scholar 

  • Stubbington, R., J. Gunn, S. Little, T. P. Worrall & P. J. Wood, 2016. Macroinvertebrate seedbank composition in relation to antecedent duration of drying and multiple wet-dry cycles in a temporary stream. Freshwater Biology 61: 1293–1307.

    Google Scholar 

  • Stubbington, R., A. Paillex, J. England, A. Barthès, A. Bouchez, F. Rimet, M. M. Sánchez-Montoya, C. G. Westwood & T. Datry, 2019. A comparison of biotic groups as dry-phase indicators of ecological quality in intermittent rivers and ephemeral streams. Ecological Indicators 97: 165–174.

    Google Scholar 

  • Tronstad, L. M., B. P. Tronstad & A. C. Benke, 2005. Invertebrate seedbanks: rehydration of soil from an unregulated river floodplain in the south-eastern US. Freshwater Biology 50: 646–655.

    Google Scholar 

  • Vadher, A. N., R. Stubbington & P. J. Wood, 2015. Fine sediment reduces vertical migrations of Gammarus pulex (Crustacea: Amphipoda) in response to surface water loss. Hydrobiologia 753: 61–71.

    Google Scholar 

  • Vadher, A. N., C. Leigh, J. Millett, R. Stubbington & P. J. Wood, 2017. Vertical movements through subsurface stream sediments by benthic macroinvertebrates during experimental drying are influenced by sediment characteristics and species traits. Freshwater Biology 62: 1730–1740.

    Google Scholar 

  • van Vliet, M. T., W. H. Franssen, J. R. Yearsley, F. Ludwig, I. Haddeland, D. P. Lettenmaier & P. Kabat, 2013. Global river discharge and water temperature under climate change. Global Environmental Change 23: 450–464.

    Google Scholar 

  • Vander Vorste, R., F. Malard & T. Datry, 2016. Is drift the primary process promoting the resilience of river invertebrate communities? A manipulative field experiment in an intermittent alluvial river. Freshwater Biology 61: 1276–1292.

    Google Scholar 

  • Verdonschot, R. C., A. M. van Oosten-Siedlecka, C. J. ter Braak & P. F. Verdonschot, 2015. Macroinvertebrate survival during cessation of flow and streambed drying in a lowland stream. Freshwater Biology 60: 282–296.

    Google Scholar 

  • Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.

    Google Scholar 

  • Williams, D. D., 2006. The biology of temporary waters. Oxford University Press, New York.

    Google Scholar 

  • Young, J. O., 1974. The occurrence of diapause in the egg stage of the life-cycle of Phaenocora typhlops (Vejdovsky) (Turbellaria: Neorhabdocoela). The Journal of Animal Ecology 43: 719–731.

    Google Scholar 

Download references

Acknowledgements

This study was supported by the INTER-COST project INTER-EXCELLENCE (MEYS LTC17017) and the Czech Science Foundation (P505-20-17305S). We thank Michal Pavonič for providing chemical analyses, Marcela Růžičková and Stanislav Němejc for their technical support and especially Jeff Nekola for English proof reading. We also thank two anonymous reviewers for their valuable comments and suggestions which significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbora Loskotová.

Additional information

Handling editor: Verónica Ferreira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loskotová, B., Straka, M., Polášek, M. et al. Macroinvertebrate seedbank survival in pristine and nutrient-enriched intermittent streams and its contribution to flow phase communities. Hydrobiologia 848, 1911–1923 (2021). https://doi.org/10.1007/s10750-021-04566-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04566-1

Keywords

Navigation