Skip to main content
Log in

Interaction between small-scale habitat properties and short-term temporal conditions on food web dynamics of a warm temperate intertidal rock pool ecosystem

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The physical properties of habitats are crucial determinants of community structure with significant effects on food web dynamics. We examined the effects of rock pool physical properties (e.g. pool size, water depth) and short-term temporal (seasonal) change (e.g. temperature, nutrients) on food web structure at small spatial scales (c. 500 m) on the warm temperate coast of South Africa. Using stable carbon and nitrogen isotope signatures, we characterised food web structure with Layman metrics and quantified food web size, defined as the total area in isotopic space occupied by consumer species. The effects of rock pool physical properties and seasonal changes on species counts and food web structure were evaluated using a Bayesian generalised linear mixed model approach. Substratum type, water depth, pool size, phosphate concentrations, salinity and temperature all influenced overall food web dynamics. A winter reduction of sand cover led to a more heterogeneous substratum and a significant increase in species counts, while consumer niche similarity decreased with increasing pool size in summer. The range of δ15N values, or trophic height, was negatively and positively affected by salinity and phosphate levels, respectively. Overall, the effects of pool physical properties on food web structure were moderated by seasonality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data and material generated during the present study are available from the corresponding author upon request.

References

  • Anderson, R. J., J. J. Bolton & H. Stegenga, 2009. Using the biogeographical distribution and diversity of seaweed species to test the efficacy of marine protected areas in the warm-temperate Agulhas Marine Province, South Africa. Diversity and Distributions 6: 1017–1027.

    Article  Google Scholar 

  • Arar, E. S. & G. B. Collins, 1992. Using the Turner Designs 10 AU Fluorometer with EPA Method 445.0: In Vitro Determination of Chlorophyll-a and Phaeophytin-a in Marine and Freshwater Phytoplankton by Fluorescence. Environmental Monitoring Systems Laboratory. Office of Reseach and Development. US Environmental Protection Agency, Cincinnati, Oh: 14 pp.

  • Asmus, R. M., M. Sprung & H. Asmus, 2000. Nutrient fluxes in intertidal communities of a South European lagoon (Ria Formosa) – similarities and differences with a northern Wadden Sea bay (Sylt-Rømø Bay). Hydrobiologia. 436: 217–235.

    Article  CAS  Google Scholar 

  • Austin, P. C., 2010. Estimating multilevel logistic regression models when the number of clusters is low: a comparison of different statistical software procedures. The International Journal of Biostatistics 6: 1–20.

    Article  Google Scholar 

  • Babaranti, O., S. Horn, T. Jowett & R. Frew, 2019. Isotopic signatures in Mytilus galloprovincialis and Ulva lactuca as bioindicators for assessing discharged sewage effluent in coastal waters along Otago Peninsula, New Zealand. Geology, Ecology, and Landscapes. 3: 153–164.

    Article  Google Scholar 

  • Bate, G. C. & B. V. Heelas, 1975. Studies on the nitrate nutrition of two indigenous Rhodesian grasses. Journal of Applied Ecology. 1: 941–952.

    Article  Google Scholar 

  • Bhadja, P., P. Poriya & R. Kundu, 2014. Community structure and distribution patterns of intertidal invertebrate macrofauna at some anthropogenically influenced coasts of Kathiawar Peninsula (India). Advances in Ecology 2014: 1–12.

    Article  Google Scholar 

  • Bersier, L. F., C. Banašek-Richter & M. F. Cattin, 2002. Quantitative descriptors of food-web matrices. Ecology. 83: 2394–2407.

    Article  Google Scholar 

  • Bolton, J. J. & H. Stegenga, 2002. Seaweed species diversity in South Africa. South African Journal of Marine Science. 24: 9–18.

    Article  Google Scholar 

  • Brierley, A. S. & M. J. Kingsford, 2009. Impacts of climate change on marine organisms and ecosystems. Current Biology. 19: 602–614.

    Article  Google Scholar 

  • Brown, A. C. & N. Jarman, 1978. Coastal marine habitats. In Biogeography and Ecology of Southern Africa. Springer, Dordrecht: 1239–1277.

  • Burnham, K. P. & D. R. Anderson, 2002. A Practical Information-Theoretic Approach. Model Selection and Multimodel Inference, 2nd ed. Springer, New York: 2.

    Google Scholar 

  • Bustamante, R. H., G. M. Branch, S. Eekhout, B. Robertson, P. Zoutendyk, M. Schleyer, A. Dye, N. Hanekom, D. Keats, M. Jurd & C. McQuaid, 1995. Gradients of intertidal primary productivity around the coast of South Africa and their relationships with consumer biomass. Oecologia. 102: 189–201.

    Article  PubMed  Google Scholar 

  • Carabel, S., E. Godínez-Domínguez, P. Verísimo, L. Fernández & J. Freire, 2006. An assessment of sample processing methods for stable isotope analyses of marine food webs. Journal of Experimental Marine Biology and Ecology. 336: 254–261.

    Article  CAS  Google Scholar 

  • Castillo-Escrivà, A., J. A. Aguilar-Alberola & F. Mesquita-Joanes, 2017. Spatial and environmental effects on a rock-pool meta-community depend on landscape setting and dispersal mode. Freshwater Biology. 6: 1004–1011.

    Article  Google Scholar 

  • Catry, T., P. M. Lourenço, R. J. Lopes, C. Carneiro, J. A. Alves, J. Costa, H. Rguibi-Idrissi, S. Bearhop, T. Piersma & J. P. Granadeiro, 2016. Structure and functioning of intertidal food webs along an avian flyway: a comparative approach using stable isotopes. Functional Ecology. 30: 468–478.

    Article  Google Scholar 

  • D’Addezio, J. M. & B. Subrahmanyam, 2016. Sea surface salinity variability in the Agulhas Current region inferred from SMOS and Aquarius. Remote Sensing of Environment. 180: 440–452.

    Article  Google Scholar 

  • Day, J. H., 1974. A Guide to Marine Life on South African Shores. A.A. Balkema, Capetown.

    Google Scholar 

  • Di Camillo, C. G., M. Coppari, I. Bartolucci, M. Bo, F. Betti, M. Bertolino, B. Calcinai, C. Cerrano, G. De Grandis & G. Bavestrello, 2011. Temporal variations in growth and reproduction of Tedania anhelans and Chondrosia reniformis in the North Adriatic Sea. In Maldonado, M., X. Turon, M. Becerro & M. J. Uriz (eds), Ancient Animals. New Challenges. Springer, Dordrecht: 299–313.

    Chapter  Google Scholar 

  • Doney, S. C., M. Ruckelshaus, J. E. Duffy, J. P. Barry, F. Chan, C. A. English, H. M. Galindo, J. M. Grebmeier, A. B. Hollowed, N. Knowlton & J. Polovina, 2011. Climate change impacts on marine ecosystems. Annual Review of Marine Science. 4: 11–37.

    Article  Google Scholar 

  • Dong, Y., X. Li, F. M. P. Choi, G. A. Williams, G. N. Somero & B. Helmuth, 2017. Untangling the roles of microclimate, behaviour and physiological polymorphism in governing vulnerability of intertidal snails to heat stress. Proceedings of the Royal Society B: Biological Sciences. 3: 284.

    Google Scholar 

  • Dorie,V. & M. V.Dorie, 2015. Package ‘blme’. Bayesian Linear Mixed-Effects Models. [available on internet at https://CRAN.R-project.org/package=blme].

  • dos Santos, M. A. Z., S. C. de Freitas, L. M. Berneira, A. Mansilla, M. S. Astorga-España, P. Colepicolo & C. M. P. de Pereira, 2019. Pigment concentration, photosynthetic performance, and fatty acid profile of sub-Antarctic brown macroalgae in different phases of development from the Magellan Region. Chile. Journal of Applied Phycology. 3: 2629–2642.

    Article  Google Scholar 

  • Drazen, J. C. & T. T. Sutton, 2017. Dining in the deep: the feeding ecology of deep-sea fishes. Annual Review of Marine Science. 9: 337–366.

    Article  PubMed  Google Scholar 

  • Farquhar, G. D., J. R. Ehleringer, & K.T. Hubick, 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40: 503–537.

    Article  CAS  Google Scholar 

  • Feuchtmayr, H. & J. Grey, 2003. Effect of preparation and preservatio procedures on carbon and nitrogen stable isotope determinations from zooplankton. Rapid Communications in Mass Spectrometry. 17: 2605–2610.

    Article  CAS  PubMed  Google Scholar 

  • Field, J. G. & C. L. Griffiths, 1991. Littoral and sublittoral ecosystems of southern Africa. Ecosystems of the World. 24: 323–346.

    Google Scholar 

  • Fischenich, C., 2002. Techniques for Measuring Substrate Embeddedness (No. ERDC-TN-EMRRP-SR-36). Engineer Research and Development Center Vicksburg MS Environmental Laboratory: 26 pp.

  • Gervais, F. & U. Riebesell, 2001. Effect of phosphorus limitation on elemental composition and stable carbon isotope fractionation in a marine diatom growing under different CO2 concentrations. Limnology and Oceanography. 46: 497–504.

    Article  CAS  Google Scholar 

  • Gravem, S. A. & S. G. Morgan, 2019. Trait-mediated indirect effects in a natural tidepool system. Marine Biology 166:23.

  • Gusha, M. N. C., T. Dalu, R. J. Wasserman & C. D. McQuaid, 2019. Zooplankton grazing pressure is insufficient for primary producer control under elevated warming and nutrient levels. Science of the Total Environment. 651: 410–418.

    Article  CAS  Google Scholar 

  • Hammer, Ø., D. A. T. Harper, & P. D. Ryan, 2001. PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontologia Electronica 4:1–9.

  • Hill, J. M., C. D. McQuaid & S. Kaehler, 2008. Temporal and spatial variability in stable isotope ratios of SPM link to local hydrography and longer term SPM averages suggest heavy dependence of mussels on nearshore production. Marine Biology. 154: 899–909.

    Article  CAS  Google Scholar 

  • Hobson, K. A. & H. E. Welch, 1992. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Marine Ecology Progress Series. 1: 9–18.

    Article  Google Scholar 

  • Hussey, N. E., M. A. MacNeil, B. C. McMeans, J. A. Olin, S. F. Dudley, G. Cliff, S. P. Wintner, S. T. Fennessy & A. T. Fisk, 2014. Rescaling the trophic structure of marine food webs. Ecology Letters. 17: 239–250.

    Article  PubMed  Google Scholar 

  • Jackson, A. L., A. C. Parnell, R. Inger & S. Bearhop, 2011. Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology. 80: 595–602.

    Article  Google Scholar 

  • Jackson, M. C., I. Donohue, A. L. Jackson, J. R. Britton, D. M. Harper & J. Grey, 2012. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS ONE 7: 1–12.

    Article  Google Scholar 

  • Jackson, M. C., H. E. Fourie, T. Dalu, D. J. Woodford, R. J. Wasserman, T. A. Zengeya, B. R. Ellender, P. K. Kimberg, M. S. Jordaan, C. T. Chimimba & O. L. F. Weyl, 2020. Food web properties vary with climate and land use in South African streams. Functional Ecology. 34: 1653–1665.

    Article  Google Scholar 

  • Johnson, M. P., 2001. Metapopulation dynamics of Tigriopus brevicornis (Harpacticoida) in intertidal rock pools. Marine Ecology Progress Series. 211: 215–224.

    Article  Google Scholar 

  • Jungerstam, J., J. Erlandsson, C. D. McQuaid, F. Porri, M. Westerbom & P. Kraufvelin, 2014. Is habitat amount important for biodiversity in rocky shore systems? A study of South African mussel assemblages. Marine biology. 161: 1507–1519.

    Article  Google Scholar 

  • Kassambara, A., 2018. ggpubr:“ggplot2” based publication ready plots. R package version 0.1, 7. https://cran.r-project.org/package=ggpubr.

  • Kennedy, V. S., R. R. Twilley, J. A. Kleypas, J. H. Cowan Jr., & S. R. Hare, 2002. Coastal and Marine Ecosystems & Global Climate Change. Pew Center on Global Climate Change Arlington, VA: 1–64.

  • Layman, C. A., A. D. Arrington, C. G. Montaña & D. M. Post, 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology. 88: 42–48.

    Article  PubMed  Google Scholar 

  • Layman, C. A., S. T. Giery, S. Buhler, R. Rossi, T. Penland, M. N. Henson, A. K. Bogdanoff, M. V. Cove, A. D. Irizarry, C. M. Schalk & S. K. Archer, 2015. A primer on the history of food web ecology: fundamental contributions of fourteen researchers. Foodweb. 4: 14–24.

    Google Scholar 

  • Legrand, E., P. Riera, L. Pouliquen, O. Bohner, T. Cariou & S. Martin, 2018. Ecological characterization of intertidal rockpools: seasonal and diurnal monitoring of physico-chemical parameters. Regional Studies in Marine Science. 17: 1–10.

    Article  Google Scholar 

  • Littler, M., D. Martz & D. Littler, 1983. Effects of recurrent sand deposition on rocky intertidal organisms: importance of substrate heterogeneity in a fluctuating environment. Marine Ecology Progress Series. 11: 129–139.

    Article  Google Scholar 

  • Macieira, R. M. & J. C. Joyeux, 2011. Distribution patterns of tidepool fishes on a tropical flat reef. Fishery Bulletin. 109: 305–315.

    Google Scholar 

  • Madigan, D. J., A. B. Carlisle, H. Dewar, O. E. Snodgrass, S. Y. Litvin, F. Micheli & B. A. Block, 2012. Stable isotope analysis challenges wasp-waist food web assumptions in an upwelling pelagic ecosystem. Scientific Reports. 2: 1–10.

    Article  Google Scholar 

  • Martins, G. M., S. J. Hawkins, R. C. Thompson & S. R. Jenkins, 2007. Community structure and functioning in intertidal rock pools: effects of pool size and shore height at different successional stages. Marine Ecology Progress Series. 329: 43–55.

    Article  Google Scholar 

  • Marufu, L., T. Dalu, C. Phiri & T. Nhiwatiwa, 2017. Diet composition changes in tigerfish of Lake Kariba following an invasion by redclaw crayfish. Annales de Limnologie – International Journal of Limnology. 53: 47–56.

    Article  Google Scholar 

  • McCutchan, J. H., W. M. Lewis, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos. 102: 378–390.

    Article  CAS  Google Scholar 

  • McQuaid, C. D. & K. M. Dower, 1990. Enhancement of habitat heterogeneity and species richness on rocky shores inundated by sand. Oecologia. 84: 142–144.

    Article  PubMed  Google Scholar 

  • Menge, B. A., B. A. Daley, P. A. Wheeler, E. Dahlhoff, E. Sanford & P. T. Strub, 1997. Benthic–pelagic links and rocky intertidal communities: bottom-up effects on top-down control. Proceedings of the National Academy of Sciences of the United States of America 26: 14530–14535.

    Article  Google Scholar 

  • Metaxas, A. & R. E. Scheibling, 1993. Community structure and organization of tidepools. Marine Ecology Progress Series. 98: 187–198.

    Article  Google Scholar 

  • Moloney, C. L., M. A. St John, K. L. Denman, D. M. Karl, F. W. Köster, S. Sundby & R. P. Wilson, 2011. Weaving marine food webs from end to end under global change. Journal of Marine Systems. 84: 106–116.

    Article  Google Scholar 

  • Nejrup, L. B. & M. F. Pedersen, 2012. The effect of temporal variability in salinity on the invasive red alga Gracilaria vermiculophylla. European Journal of Phycology. 47: 254–263.

    Article  Google Scholar 

  • Ojwang, W. O., J. E. Ojuok, D. Mbabazi & L. Kaufman, 2010. Ubiquitous omnivory, functional redundancy and the resiliency of Lake Victoria fish community. Aquatic Ecosystem Health and Management. 13: 269–276.

    Article  Google Scholar 

  • Patil, I. 2018. ggstatsplot: ‘ggplot2’ based plots with statistical details. The Comprehensive R Archive Network. https://cran.r-project.org/web/packages/ggstatsplot/index.html.

  • Peralta-Maraver, I., A. L. Robertson, E. L. Rezende, A. L. Lemes da Silva, D. Tonetta, M. Lopes, R. Schmitt, N. K. Leite, A. Nuñer & M. M. Petrucio, 2017. Winter is coming: food web structure and seasonality in a subtropical freshwater coastal lake. Ecology and Evolution. 7: 4534–4542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perkins, N. R., N. A. Hill, S. D. Foster & N. S. Barrett, 2015. Altered niche of an ecologically significant urchin species, Centrostephanus rodgersii, in its extended range revealed using an Autonomous Underwater Vehicle. Estuarine, Coastal and Shelf Science. 155: 56–65.

    Article  Google Scholar 

  • Pilditch, C. A., D. Leduc, S. D. Nodder, P. K. Probert & D. A. Bowden, 2015. Spatial patterns and environmental drivers of benthic infaunal community structure and ecosystem function on the New Zealand continental margin. New Zealand Journal of Marine and Freshwater Research 49: 224–246.

    Article  CAS  Google Scholar 

  • Pinnegar, J. K., N. V. C. Polunin, P. Francour, F. Badalamenti, R. Chemello, M. L. Harmelin-Vivien, B. Hereu, M. Milazzo, M. Zabala, G. D’anna & C. Pipitone, 2000. Trophic cascades in benthic marine ecosystems: lessons for fisheries and protected-area management. Environmental Conservation. 27: 179–200.

    Article  Google Scholar 

  • Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology. 83: 703–718.

    Article  Google Scholar 

  • Procheş, Ş. & D. J. Marshall, 2002. Diversity and biogeography of southern African intertidal Acari. Journal of Biogeography. 29: 1201–1215.

    Article  Google Scholar 

  • Quezada-Romegialli, C., A. L. Jackson, B. Hayden, K. K. Kahilainen, C. Lopes & C. Harrod, 2018. tRophicPosition, an R package for the Bayesian estimation of trophic position from consumer stable isotope ratios. Methods in Ecology and Evolution. 9: 1592–1599.

    Article  Google Scholar 

  • R Core Team, 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.rproject.org/.

  • Roberts, M. J., 2005. Chokka squid (Loligo vulgaris reynaudii) abundance linked to changes in South Africa’s Agulhas Bank ecosystem during spawning and the early life cycle. ICES Journal of Marine Science. 62: 33–55.

    Article  Google Scholar 

  • Rosenzweig, M. L., Z. Abramsky & S. Brand, 1984. Estimating species interactions in heterogeneous environments. Oikos. 1: 329–340.

    Article  Google Scholar 

  • Schaal, G., P. Riera, C. Leroux & J. Grall, 2010. A seasonal stable isotope survey of the food web associated to a peri-urban rocky shore. Marine Biology. 157: 83–294.

    Article  Google Scholar 

  • Scott, R. J., C. L. Griffiths & T. B. Robinson, 2012. Patterns of endemicity and range restriction among southern African coastal marine invertebrates. African Journal of Marine Science. 34: 341–347.

    Article  Google Scholar 

  • Seabra, R., D. S. Wethey, A. M. Santos & F. P. Lima, 2011. Side matters: microhabitat influence on intertidal heat stress over a large geographical scale. Journal of Experimental Marine Biology and Ecology. 400: 200–208.

    Article  Google Scholar 

  • Sebens, K. P., 1991. Habitat structure and community dynamics in marine benthic systems. Habitat Structure. 8: 211–234.

    Article  Google Scholar 

  • Seuront, L., K. R. Nicastro, G. I. Zardi & E. Goberville, 2019. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Scientific Reports. 9: 1–14.

    Article  Google Scholar 

  • Sink, K. J., G. M. Branch & J. M. Harris, 2005. Biogeographic patterns in rocky intertidal communities in KwaZulu-Natal, South Africa. African Journal of Marine Science. 27: 81–96.

    Article  Google Scholar 

  • Šmilauer, P. & J. Lepš, 2003. Multivariate Analysis of Ecological Data Using CANOCO 5. Cambridge University Press, Cambridge: 26–44.

    Google Scholar 

  • Stock, B. C., A. L. Jackson, E. J. Ward, A. C. Parnell, D. L. Phillips & B. X. Semmens, 2018. Analysing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ. 6: e5096.

    Article  PubMed  PubMed Central  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A Practical Handbook of Seawater Analysis. Bulletin of Fisheries Research Board of Canada. The Alger Press Limited, Ottawa: 167–311.

  • Tecchio, S., D. Van Oevelen, K. Soetaert, J. Navarro & E. Ramírez-Llodra, 2013. Trophic dynamics of deep-sea megabenthos are mediated by surface productivity. PLoS ONE 8: e63796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tekin, E., P. J. Yeh & V. M. Savage, 2018. General form for interaction measures and framework for deriving higher-order emergent effects. Frontiers in Ecology and Evolution. 6: 166.

    Article  Google Scholar 

  • Thyssen, M., S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach & L. F. Artigas, 2015. High-resolution analysis of a north sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing. Biogeosciences. 12: 4051–4066.

    Article  Google Scholar 

  • Tilman, D., 1986. A consumer-resource approach to community structure. American Zoologist. 26: 5–22.

    Article  Google Scholar 

  • Twomey, M., U. Jacob & M. C. Emmerson, 2012. Perturbing a marine food web: consequences for food web structure and trivariate patterns. Advances in Ecological Research. 47: 349–409.

    Article  Google Scholar 

  • Vander Zanden, M. J., J. D. Olden & C. Gratton, 2006. Food-web approaches in restoration ecology. In Falk, D. A., M. A. Palmer & J. B. Zedler (eds), Foundations of Restoration Ecology. Island Press, Washington, D.C.: 165–189.

    Google Scholar 

  • Zardi, G. I., K. R. Nicastro, C. D. McQuaid & J. Erlandsson, 2008. Sand and wave induced mortality in invasive (Mytilus galloprovincialis) and indigenous (Perna perna) mussels. Marine Biology 153: 853–858.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa (NRF; Grant Number 64801). Tatenda Dalu is supported by the NRF Thuthuka (Grant Number 117700). We acknowledge and thank Grant Hall from the Stable Isotope Laboratory at the Mammal Research Institute, University of Pretoria who processed our stable isotope samples. Many thanks to Ticia Swanepoel for administrative and technical assistance, Agripa Ngorima, Isabel Micklem and Tiyisani Chavalala for assistance during sampling. We are grateful to two anonymous reviewers for helpful comments and suggestions on this paper.

Funding

This work was funded by the South African Research Chairs Initiative of the Department of Science and Technology and the National Research Foundation of South Africa.

Author information

Authors and Affiliations

Authors

Contributions

TD, CDM and MNCG conceptualised and designed the methodology; MNCG and TD collected the data; MNCG analysed the data and wrote the original draft; TD, CDM and MNCG reviewed and edited the drafts; CDM provided funding for the research. All authors gave final approval for publication.

Corresponding author

Correspondence to Molline N. C. Gusha.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Consent for publication

The authors give consent to publish this article.

Ethical approval

An ethics permit (RU-LAD-16-08-0001) was granted to conduct this study.

Additional information

Handling editor: Daniele Nizzoli

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusha, M.N.C., Dalu, T. & McQuaid, C.D. Interaction between small-scale habitat properties and short-term temporal conditions on food web dynamics of a warm temperate intertidal rock pool ecosystem. Hydrobiologia 848, 1517–1533 (2021). https://doi.org/10.1007/s10750-021-04535-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04535-8

Keywords

Navigation