Skip to main content

Advertisement

Log in

Not all methods are created equal: assessment of sampling methods for crayfishes and fishes in southern Appalachian streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We compared the effectiveness of three sampling methods (kick seining, electrofishing, and nest trapping) to collect crayfishes and fishes, simultaneously, in southern Appalachian Mountain streams (Alabama, USA). For crayfishes, kick seining collected the highest species richness and most individuals. However, by combining kick seining and electrofishing collections, we decreased the number of sites needed to accurately assess crayfish richness relative to using one method. For 9 of the 13 species collected, no differences in crayfish sizes or sex ratios were detected between electrofishing and kick seining. In the remaining four species, electrofishing collected larger crayfishes and more females than kick seining. For fishes, electrofishing was most effective at assessing fish species richness. Sampled fish richness was higher when electrofishing in streams with higher water temperatures and width-to-depth ratios, as well as lower conductivities and smaller substrates. Electrofishing was the most effective sampling method for collecting Centrarchids, whereas kick seining was most effective at collecting Cyprinids. Nest traps were the least effective sampling method. We conclude that using a combination of kick seining and electrofishing is best for assessing stream fish and crayfish assemblages, simultaneously, which can improve management, biomonitoring, and understanding of the complex relationships between these faunal groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data generated and analyzed during the current study are available from the corresponding author upon request.

References

  • Allard, L., G. Grenoullet, K. Khazraie, L. Tudesque, R. Vigouroux & S. Brosse, 2014. Electrofishing efficiency in low conductivity neotropical streams: towards a non-destructive fish sampling method. Fisheries Management and Ecology 21: 234–243.

    Article  Google Scholar 

  • Allen, W., 2001. Cahaba River National Wildlife Refuge Legislation; Progress Begins with Presidential Signature. Spring Issue: Alabama Nature News. The Nature Conservancy of Alabama.

  • Alonso, F., 2001. Efficiency of electrofishing as a sampling method for freshwater crayfish populations in small creeks. Limnetica 20: 59–72.

    Article  Google Scholar 

  • Angermeier, P. L. & R. A. Smogor, 1995. Estimating number of species and relative abundances in stream-fish communities: effects of sampling effort and discontinuous spatial distributions. Canadian Journal of Fisheries and Aquatic Sciences 52: 936–949.

    Article  Google Scholar 

  • Bain, M. B. & N. J. Stevenson, 1999. Aquatic Habitat Assessment: Common Methods. American Fisheries Society, Bethesda, Maryland.

    Google Scholar 

  • Barnett, Z. C. & S. B. Adams, 2018. Comparison of two crayfish trapping methods in coastal plain seasonal wetlands. North American Journal of Fisheries Management 38: 911–921.

    Article  Google Scholar 

  • Barnett, Z. C., S. B. Adams & R. L. Rosamond, 2017. Habitat use and life history of the vernal crayfish, Procambarus viaeviridis (Faxon, 1914), a secondary burrowing crayfish in Mississippi, USA. Journal of Crustacean Biology 37: 544–555.

    Article  Google Scholar 

  • Barnett, Z. C., C. A. Ochs, J. D. Hoeksema & S. B. Adams, 2020. Multi-pass electrofishing sampling efficiency for stream crayfish population estimations. North American Journal of Fisheries Management 40: 840–851.

    Article  Google Scholar 

  • Barton, K. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed. Springer, New York.

    Google Scholar 

  • Bechler, D. L., C. H. Conn & T. S. Ling, 1990. A novel nest-trap for ecological and behavioral studies of cavity-nesting fishes. Journal of Fish Biology 36: 277–278.

    Article  Google Scholar 

  • Bechler, D. L., P. Hightower, J. Rousey & M. E. Smith, 2014. The use of nest-traps to study behavior, population structure and life history of Procambarus spiculifer. Freshwater Crayfish 20: 7–16.

    Article  Google Scholar 

  • Biernacki, C., G. Celeux & G. Govaert, 2000. Assessing the mixture model for clustering with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence 22: 719–725.

    Article  Google Scholar 

  • Bisson, P. A., J. L. Nielsen, R. A. Palmason & L. E. Grove, 1982. A system of naming habitat types in small streams, with examples of habitat utilization by salmonids during low stream flow. In Armantrout, N. B. (ed), Proceedings of a Symposium on Acquisition and Utilization of Aquatic Habitat Inventory Information. Western Division of the American Fisheries Society, Portland, Oregon: 62–73.

  • Black, T. R., 2011. Habitat use of stream-dwelling crayfish during reproductive seclusion and vulnerability of juvenile crayfish to an herbicide. Ph.D. dissertation, Tennessee Technological University, Cookeville, Tennessee.

  • Bonar, S. A., W. A. Hubert & D. W. Willis, 2009. Standard Methods for Sampling North American Freshwater Fishes. American Fisheries Society, Bethesda, Maryland.

    Google Scholar 

  • Brewer, S. K., R. J. DiStefano & C. F. Rabeni, 2009. The influence of age-specific habitat selection by a stream crayfish community (Orconectes spp.) on secondary production. Hydrobiologia 619: 1–10.

    Article  Google Scholar 

  • Budnick, W. R., W. E. Kelso, S. B. Adams & M. D. Kaller, 2018. A multigear protocol for sampling crayfish assemblages in Gulf of Mexico coastal streams. Hydrobiologia 822: 55–67.

    Article  Google Scholar 

  • Burba, A., 1993. Investigation of the effects of anthropogenic factors on crayfish behavioural reactions. In Holdich, D. M & G. F. Warner (eds), Freshwater crayfish IX. Papers from the 9th International Symposium of Astacology, Reading, England. University of Southwestern Louisiana, Lafayette, Louisiana: 466–476.

  • Burnham, K. P. & D. R. Anderson, 2004. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research 33: 261–304.

    Article  Google Scholar 

  • Camp, M. A., C. E. Skelton & C. B. Zehnder, 2011. Population dynamics and life history characteristics of the ambiguous crayfish (Cambarus striatus). Freshwater Crayfish 18: 75–81.

    Article  Google Scholar 

  • Chao, A., 1984. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11: 265–270.

    Google Scholar 

  • Collar, D. C. & P. C. Wainwright, 2009. Ecomorphology of centrachid fishes. In Cooke, S. J. & D. P. Philipp (eds), Centrarchid Fishes: Diversity, Biology, and Conservation. Blackwell Publishing Ltd., Sussex: 70–89.

    Chapter  Google Scholar 

  • Colwell, R. K., 2013. EstimateS 9.1.0. User’s Guide. University of Connecticut, Storrs, Connecticut.

  • Cowx, I. G., A. D. Nunn & J. P. Harvey, 2001. Quantitative sampling of 0-group fish populations in large lowland rivers: point abundance sampling by electrofishing versus micromesh seine netting. Archiv fur Hydrobiologie 151: 369–382.

    Article  Google Scholar 

  • Crandall, K. A. & J. E. Buhay, 2008. Global diversity of crayfish (Astacidae, Cambaridae, and Parastacidae – Decapoda) in freshwater. Hydrobiologia 595: 295–301.

    Article  Google Scholar 

  • Dauble, D. D. & R. H. Gray, 1980. Comparison of a small seine and a backpack electroshocker to evaluate nearshore fish populations in river. Progressive Fish Culturist 42: 93–95.

    Article  Google Scholar 

  • David, B. O., M. P. Hamer, K. J. Collier, M. D. Lake, G. M. Surrey & K. McArthur, 2010. A standardized sampling protocol for robust assessment of reach-scale fish community diversity in wadeable New Zealand streams. New Zealand Journal of Marine and Freshwater Research 44: 177–187.

    Article  Google Scholar 

  • Degerman, E., P. A. Nilsson, P. Nyström, E. Nilsson & L. Olsson, 2007. Are fish populations in temperate streams affected by crayfish?–a field survey and prospects. Environmental Biology of Fishes 78: 231–239.

    Article  Google Scholar 

  • DiStefano, R. J., 2000. Development of a quantitative sampling method to assess crayfish communities and macrohabitat associations in Missouri Ozark streams. Missouri Department of Conservation, Federal Aid in Sport Fish Restoration, Project F-1-R-42, Final Report, Columbia.

  • DiStefano, R. J., C. M. Gale, B. A. Wagner & R. D. Zweifel, 2003. A sampling method to assess lotic crayfish communities. Journal of Crustacean Biology 23: 678–690.

    Article  Google Scholar 

  • Dorn, N. J., 2008. Colonization and reproduction of large macroinvertebrates are enhanced by drought-related fish reductions. Hydrobiologia 605: 209–218.

    Article  Google Scholar 

  • Dorn, N. J. & G. G. Mittlebach, 1999. More than predator and prey: a review of interactions between fish and crayfish. Vie et Milieu 49: 229–237.

    Google Scholar 

  • Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: then need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.

    Google Scholar 

  • Engelbert, B. S., C. A. Taylor & R. J. DiStefano, 2016. Development of standardized stream-dwelling crayfish sampling methods at site and drainage scales. North American Journal of Fisheries Management 36: 104–115.

    Article  Google Scholar 

  • Englund, G., 1999. Effects of fish on the local abundance of crayfish in stream pools. Oikos 87: 48–56.

    Article  Google Scholar 

  • Englund, G. & J. J. Krupa, 2000. Habitat use by crayfish in stream pools: influence of predators, depth and body size. Freshwater Biology 43: 75–83.

    Article  Google Scholar 

  • France, R., J. Holmes & A. Lynch, 1991. Use of size-frequency data to estimate the age composition of crayfish populations. Canadian Journal of Fisheries and Aquatic Sciences. 48: 2324–2332.

    Article  Google Scholar 

  • Garvey, J. E., R. A. Stein & H. M. Thomas, 1994. Assessing how fish predation and interspecific prey competition influence a crayfish assemblage. Ecology 75: 532–547.

    Article  Google Scholar 

  • Garvey, J. E., J. E. Rettig, R. A. Stein, D. M. Lodge & S. P. Klosiewski, 2003. Scale-dependent associations among fish predation, littoral habitat, and distributions of crayfish species. Ecology 84: 3339–3348.

    Article  Google Scholar 

  • Gladman, A. F., W. E. Yeomans, C. E. Adams, C. W. Bean, D. McColl, J. P. Olszewska, C. W. McGillivray & R. McCluskey, 2010. Detecting North American signal crayfish (Pacifastacus leniusculus) in riffles. Aquatic Conservation: Marine and Freshwater Ecosystems 20: 588–594.

    Article  Google Scholar 

  • Griffith, M. B., 2014. Natural variation and current reference for specific conductivity and major ions in wadeable streams of the conterminous USA. Freshwater Science 333: 1–17.

    Article  Google Scholar 

  • Hamr, P., 2002. Orconectes. In Holdich, D. M. (ed.), Biology of Freshwater Crayfish. Blackwell Science, Oxford: 585–608.

    Google Scholar 

  • Harrelson, C. C., C. L. Rawlins & J. P. Potyondy, 1994. Stream channel reference sites: an illustration guide to field technique. General Technical Report RM-245. Fort Collins, Colorado: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station.

  • Hicks, B. J., 2003. Distribution and abundance of fish and crayfish in a Waikato stream in relation to basin area. New Zealand Journal of Zoology 30: 149–160.

    Article  Google Scholar 

  • Hightower, P. W. & D. L. Bechler, 2013. The life history of the crayfish Procambarus (Pennides) spiculifer in the Alapahoochee River. Freshwater Crayfish 19: 77–89.

    Article  Google Scholar 

  • Hobbs Jr., H. H., 1959. Malacostraca: Decapoda. In Edmondson, W. T. (ed.), Ward and Whipple’s Freshwater Biology, 2nd ed. Wiley and Sons, New York: 878–901.

    Google Scholar 

  • Hurvich, C. M. & D. L. Tsai, 1989. Regression and time series model selection in small samples. Biometrika 76: 298–307.

    Article  Google Scholar 

  • Jackson, D. A. & H. H. Harvey, 1997. Qualitative and quantitative sampling of lake fish communities. Canadian Journal of Fisheries and Aquatic Sciences 54: 2807–2813.

    Article  Google Scholar 

  • Johnson, P. C. D., 2014. Extension of Nakagawa & Schielzeth’s \({R^{2}}_{\text{GLMM}}\) to random slopes models. Methods in Ecology and Evolution 5: 944–946.

  • Keller, T. A. & P. A. Moore, 1999. Effects of ontogeny and odors on behavior: the influence of crayfish size and fish odors on crayfish movement. Marine and Freshwater Behaviour and Physiology 33: 35–50.

    Article  Google Scholar 

  • Kusabs, I. A., B. J. Hicks, J. M. Quinn, W. L. Perry & H. Whaanga, 2018. Evaluation of a traditional Māori harvesting method for sampling koura (freshwater crayfish, Paranephrops planifrons) and toi toi (bully, Gobiomorphus spp.) populations in two New Zealand streams. New Zealand Journal of Marine and Freshwater Research 52: 603–625.

    Article  Google Scholar 

  • Kushlan, J. A., 1974. Quantitative sampling of fish populations in shallow, freshwater environments. Transactions of the American Fisheries Society 103: 348–352.

    Article  Google Scholar 

  • Kuznetsova, A., P. B. Brockhoff & R. H. B. Brockhoff, 2015. Package ‘lmerTest’. R package version 2.

  • Larson, E. R. & J. D. Olden, 2016. Field sampling techniques for crayfish. In Longshaw, M. & P. Stebbing (eds), Biology and Ecology of Crayfish. CRC Press, Boca Raton, Florida: 287–324.

    Google Scholar 

  • Larson, E. R., R. J. DiStefano, D. D. Magoulick & J. T. Westhoff, 2008. Efficiency of quadrat sampling technique for estimating riffle-dwelling crayfish density. North American Journal of Fisheries Management 28: 1036–1043.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 2012. Numerical Ecology, 3rd ed. Elsevier, Oxford.

    Google Scholar 

  • Leisch, F., 2014. Flexmix: a general framework for finite mixture models and latent glass regression in R. Journal of Statistical Software 11: 1–18.

    Google Scholar 

  • Matthews, W. J. & E. Marsh-Matthews, 2017. Stream Fish Community Dynamics: A Critical Synthesis. Johns Hopkins University Press, Baltimore, Maryland.

    Book  Google Scholar 

  • McGregor, S. W. & J. T. Garner, 2003. Changes in the freshwater mussel (Bivalvia: Unionidae) fauna of the Bear Creek system of northwest Alabama and northeast Mississippi. American Malacological Bulletin 18: 61–70.

    Google Scholar 

  • Miranda, L. E. & R. H. Kidwell, 2010. Unintended effects of electrofishing on nongame fishes. Transactions of the American Fisheries Society 139: 1315–1321.

    Article  Google Scholar 

  • Momot, W. T., 1967. Population dynamics and productivity of the crayfish, Orconectes virilis, in a marl lake. American Midland Naturalist 78: 55–81.

    Article  Google Scholar 

  • Momot, W. T. & H. Gowing, 1972. Differential seasonal migration of the crayfish, Orconectes virilis (Hagen) in marl lakes. Ecology 53: 479–483.

    Article  Google Scholar 

  • Nakagawa, S. & H. Schielzeth, 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4: 133–142.

    Article  Google Scholar 

  • Olsen, T. M., D. M. Lodge, G. M. Capelli & R. J. Houlihan, 1991. Mechanisms of impact of an introduced crayfish (Orconectes rusticus) on littoral congeners, snails and macrophytes. Canadian Journal of Fisheries and Aquatic Sciences 48: 1853–1861.

    Article  Google Scholar 

  • Olsen, D. S., B. B. Roper, J. L. Kershner, R. Henderson & E. Archer, 2005. Sources of variability in conducting pebble counts: their potential influence on the results of stream monitoring programs. Journal of the American Water Resources Association 41: 1225–1236.

    Article  Google Scholar 

  • Onorato, D. P., R. A. Angus & K. R. Marion, 1998. Comparison of a small-mesh seine and a backpack electroshocker for evaluating fish populations in a north-central Alabama stream. North American Journal of Fisheries Management 18: 361–373.

    Article  Google Scholar 

  • Page, L. M., 1985. The crayfishes and shrimps (Decapoda) of Illinois. Illinois Natural History Survey Bulletin 33: 335–448.

    Article  Google Scholar 

  • Parkyn, S. M., 2015. A review of current techniques for sampling freshwater crayfish. In Kawai, T., Z. Faulkes & G. Scholtz (eds), Freshwater Crayfish: A Global Overview. CRC Press, Boca Raton, Florida: 205–220.

    Chapter  Google Scholar 

  • Parkyn, S. M., R. J. DiStefano & E. M. Imhoff, 2011. Comparison of constructed microhabitat and baited traps in Table Rock Reservoir, Missouri, USA. Freshwater Crayfish 18: 69–74.

    Article  Google Scholar 

  • Pflieger, W. L., P. S. Haverland, & M. A. Schene, Jr., 1982. Missouri’s system for storage retrieval and analysis of stream resource data. In N. B. Armantrout (ed.), Acquisition and Utilization of Aquatic Habitat Inventory Information, Proceedings of a Symposium 28–30 October, 1981, Hilton Hotel, Portland, Oregon: 284–290.

  • Pflieger, W. L., 1996. The Crayfishes of Missouri. Missouri Department of Conservation, Jefferson City.

    Google Scholar 

  • Philip, B. W. & C. E. Johnston, 2004. Changes in the fish assemblage of Bear Creek (Tennessee River Drainage) Alabama and Mississippi: 1968–2000. Southeastern Naturalist 3: 205–219.

    Article  Google Scholar 

  • Pierson, J. M., W. M. Howell, R. A. Stiles, M. F. Mettee, P. E. O’Niel, R. D. Suttkus & J. S. Ramsey, 1989. Fishes of the Cahaba River system in Alabama. Geological Survey of Alabama, Bulletin 134, Tuscaloosa, Alabama.

  • Poos, M. N., N. E. Mandrak & R. L. McLaughlin, 2007. The effectiveness of two common sampling methods for assessing imperiled freshwater fishes. Journal of Fish Biology 70: 691–708.

    Article  Google Scholar 

  • Price, J. E. & S. M. Welch, 2009. Semi-quantitative methods for crayfish sampling: sex, size, and habitat bias. Journal of Crustacean Biology 29: 208–216.

    Article  Google Scholar 

  • R Core Team, 2013. R: A language environment for statistical computing. http://www.R-project.org/.

  • Rabeni, C. F., K. J. Collier, S. M. Parkyn & B. J. Hicks, 1997. Evaluating techniques for sampling stream crayfish (Paranephrops planifrons). New Zealand Journal of Marine and Freshwater Research 31: 693–700.

    Article  Google Scholar 

  • Rahel, F. J. & R. A. Stein, 1988. Complex predator-prey interactions and predator intimidation among crayfish piscivorous fish, and small benthic fish. Oecologia 75: 94–98.

    Article  PubMed  Google Scholar 

  • Reid, S. M. & J. Devlin, 2014. Effectiveness of stream sampling methods in capturing non-native Rusty Crayfish (Orconectes rusticus) in Ontario. The Canadian Field-Naturalist 128: 111–118.

    Article  Google Scholar 

  • Reynolds, J. D., 2011. A review of ecological interactions between crayfish and fish, indigenous and introduced. Knowledge and Management of Aquatic Ecosystems 401: 10.

    Article  Google Scholar 

  • Reynolds, J. B. & L. A. Koltz, 2013. Electrofishing. In Zale, A. V., D. L. Parrish & T. M. Sutton (eds), Fisheries Techniques, 3rd ed. American Fisheries Society, Bethesda, Maryland: 305–361.

    Google Scholar 

  • Richman, N. I., M. Böhm, S. B. Adams, F. Alvarez, E. A. Bergey, J. J. S. Bunn, Q. Burnham, J. Cordeiro, J. Coughran, K. A. Crandall, K. L. Dawkins, R. J. DiStefano, N. E. Doran, L. Edsman, A. G. Eversole, L. Füreder, J. M. Furse, F. Gherardi, P. Hamr, D. M. Holdich, P. Horwitz, K. Johnston, C. M. Jones, J. P. G. Jones, R. L. Jones, T. G. Jones, T. Kawai, S. Lawler, M. López-Mejía, R. M. Miller, C. Pedraza-Lara, J. D. Reynolds, A. M. M. Richardson, M. B. Schultz, G. A. Schuster, P. J. Sibley, C. Souty-Grosset, C. A. Taylor, R. F. Thoma, J. Walls, T. Walsh & B. Collen, 2015. Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Philosophical Transactions of the Royal Society. Series B, Biological Sciences 370: 20140060.

    Article  Google Scholar 

  • Ripley, B., 2014. Support functions and datasets for Venables and Ripley’s MASS. R package version 3.

  • Roberts, D. W., 2016. Ordination and multivariate analysis for ecology, package labdsv. R package version 2.

  • Schwartz, F. J., R. Rubelmann & J. Allison, 1963. Ecological population expansion of the introduced crayfish, Orconectes virilis. Ohio Journal of Science 63: 266–273.

    Google Scholar 

  • Scottish Fisheries Co-ordination Centre (SFCC), 2007. Introductory Electrofishing Training Manual Fisheries Management SVQ Level 2: Catch Fish Using Electrofishing Techniques. Barony College, Inverness.

    Google Scholar 

  • Shank, M. K., A. M. Henning & A. S. Leakey, 2016. Examination of a single-unit, multiple-pass electrofishing protocol to reliably estimate fish assemblage composition in wadeable streams of Mid-Atlantic region of the USA. North American Journal of Fisheries Management 36: 497–505.

    Article  Google Scholar 

  • Shepard, T. E., P. E. O’Neil, S. W. McGregor, & S. C. Harris, 1994. Water-quality and biomonitoring studies in the upper Cahaba River drainage of Alabama. Geological Survey of Alabama, Bulletin 160, Tuscaloosa.

  • Simon, T. P., 2004. Standard operating procedures for the collection and study of burrowing crayfish in Indiana. I. Methods for the collection of burrowing crayfish in streams and terrestrial habitats. Occasional Papers of the Indiana Biological Survey Aquatic Research Center 2: 1–18.

    Google Scholar 

  • Snyder, D. E., 2003. Invited overview: conclusions from a review of electrofishing and its harmful effects of fish. Reviews in Fish Biology and Fisheries 13: 445–453.

    Article  Google Scholar 

  • Stein, R. A., 1977. Selective predation, optimal foraging, and the predator-prey interaction between fish and crayfish. Ecology 58: 1237–1253.

    Article  Google Scholar 

  • Stein, R. A. & J. J. Magnuson, 1976. Behavioral response of crayfish to a fish predator. Ecology 57: 751–761.

    Article  Google Scholar 

  • Thom, T. A., R. E. Burns, J. Faustini & K. J. Hunt, 2013. Water Resource Inventory and Assessment: Cahaba River National Wildlife Refuge, Bibb County, Alabama, U.S. Fish and Wildlife Service, Southeast Region. Atlanta, Georgia.

  • Tiemann, J. S. & B. L. Tiemann, 2004. Diel periodicity of a small Midwestern stream riffle fish assemblage, with comments on electroshocking and kick seining comparisons. Illinois Natural History Survey, Center for Biodiversity Technical Report 2003 (36).

  • Usio, N. & C. R. Townsend, 2000. Distribution of the New Zealand crayfish Paranephrops zealandicus in relation to stream physio-chemistry, predatory fish, and invertebrate prey. New Zealand Journal of Marine and Freshwater Research 34: 557–567.

    Article  Google Scholar 

  • Wallace, J. B., J. R. Webster & R. L. Lowe, 1992. High-gradient streams of the Appalachians. In Hackney, C. T., S. M. Adams & W. A. Martic (eds), Biodiversity of Southeastern United States Aquatic Communities. Wiley, New York: 133–191.

    Google Scholar 

  • Weagle, K. V. & G. W. Ozburn, 1972. Observations on aspects of the life history of the crayfish, Orconectes virilis (Hagen), in northwestern Ontario. Canadian Journal of Zoology 50: 366–370.

    Article  Google Scholar 

  • Weddle, G. K. & R. K. Kessler, 1993. A square-metre electrofishing sampler for benthic riffle fishes. Journal of the North American Benthological Society 12: 291–301.

    Article  Google Scholar 

  • Westman, K., M. Pursiainen & O. Sumari, 1978. Electric Fishing in the Sampling of Crayfish. Information fraan Soetvattenslaboratoriet, Drottningholm.

    Google Scholar 

  • Williams, T. M. & D. M. Amatya, 2016. Coastal plain soils and geomorphology: a key to understanding forest hydrology. In Stringer, C. E., K. W. Kraussn & J. S. Latimer (eds), Headwater to estuaries: advances in watershed science and management, Proceedings of the Fifth Interagency Conference on Research in the Watersheds. March 2–5, 2015, North Charleston, South Carolina. General Technical Report SRS-211. Asheville, NC, U.S. Department of Agriculture, Forest Service, Southern Research Station.

  • Williams, K., S. K. Brewer & M. R. Ellersieck, 2014. A comparison of two gears for quantifying abundance of lotic-dwelling crayfish. Journal of Crustacean Biology 34: 54–60.

    Article  Google Scholar 

  • Wohl, E., L. E. Polvi & D. Cadol, 2011. Wood distribution along streams draining old-growth floodplain forests in Congaree National Park, South Carolina, USA. Geomorphology 126: 108–120.

    Article  Google Scholar 

  • Wolman, M. G., 1954. A method of sampling coarse river-bed material. Transaction of American Geophysical Union 35: 951–956.

    Article  Google Scholar 

  • Wood, K. A., R. B. Hayes, J. England & J. Grey, 2017. Invasive crayfish impacts on native fish diet growth vary with fish life stage. Aquatic Sciences 79: 113–125.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, D., B. Allenn & R. R. Sharitz, 2006. Twelve year response of old-growth southeastern bottomland hardwood forests to disturbance from Hurricane Hugo. Canadian Journal of Forest Research 36: 3136–3147.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the following individuals for assistance with field collections: G. McWhirter, M. Bland, C. Smith, and Z. Choice (USFS); S. McGregor, R. Bearden, S. Stanley, and P. Nenstiel (Geological Survey of Alabama); S. McKinney (Bear Creek Development Authority); C. Johnson (Alabama Department of Environmental Management); D. Butler (Cahaba Riverkeeper); C. Mangum (Weyerhaeuser); J. Sackreiter, J. Payne, J. Banusiewicz, L. Eveland, E. Liles, and K. Forbes (University of Mississippi); C. Quinn and F. Murphy (USFS contractors); E. Choice, K. Abdo, and T. Reed (USFS volunteers); and B. Simms (American Fisheries Society Hutton Scholar). We are grateful to M. Copeland (USDA NRCS) for assistance contacting landowners and to the many landowners who granted us stream access from their properties. We also thank C. Sabatia for statistical advice. Work was supported by the USFS Southern Research Station, the University of Mississippi, and the Birmingham Audubon Society. Products mentioned do not constitute endorsement by the USFS or University of Mississippi. There is no conflict of interest declared in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zanethia C. Barnett.

Additional information

Handling editor: Lee B. Kats

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

10750_2021_4531_MOESM2_ESM.tif

Supplementary material 2 (TIFF 30521 kb) Online Resource 2 Postorbital carapace length-frequency charts for kick seining and electrofishing collections of the most abundant crayfish species in the Bear Creek (a) and Cahaba River (b) drainages. Dashed lines represent age classes estimated using mixed distribution analyses, with peaks at age class median lengths.

Supplementary material 3 (TIFF 15457 kb)

Supplementary material 4 (TIFF 28663 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnett, Z.C., Ochs, C.A., Hoeksema, J.D. et al. Not all methods are created equal: assessment of sampling methods for crayfishes and fishes in southern Appalachian streams. Hydrobiologia 848, 1491–1515 (2021). https://doi.org/10.1007/s10750-021-04531-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04531-y

Keywords

Navigation