Skip to main content
Log in

Trophic niches of three sympatric invasive crayfish of EU concern

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The spread of non-native species results in novel and often unexpected assemblages. Using stable isotopes, we disentangled the trophic relationships between three invasive crayfish species at two sites of a small thermal tributary of the Barát stream, Hungary. We studied Procambarus virginalis and Faxonius limosus living in sympatry in the upper section of this thermal tributary, and then an assemblage in a lower section also containing P. clarkii. The two species in the upper section largely shared trophic niches, although P. virginalis was more carnivorous than F. limosus, which fed more on detritus and aquatic plants. In the lower section, P. clarkii had a distinctive trophic niche, being more carnivorous than the other species and also preying on other crayfish and fish. The trophic niches of the other two species shifted slightly, being narrower and more overlapping in the presence of P. clarkii. It seems that the presence of P. clarkii affects the feeding habits and trophic niches of the other two crayfish. Our results also indicate that the species have somewhat distinctive feeding niches, which suggests that the ecosystem effects of these species are likely to be at least partially additive in the shared localities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source Google Earth

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, C. & G. Cabana, 2007. Estimating the trophic position of aquatic consumers in river food webs using stable nitrogen isotopes. Journal of the North American Benthological Society 26(2): 273–285.

    CAS  Google Scholar 

  • Bláha, M., J. Patoka, P. Kozák & A. Kouba, 2016. Unrecognized diversity in New Guinean crayfish species (Decapoda, Parastacidae): the evidence from molecular data. Integrative Zoology 11: 447–458.

    Google Scholar 

  • Bláha, M., M. Uzhytchak, V. Bondarenko & T. Policar, 2017. The least known European native crayfish Astacus pachypus (Rathke, 1837) revealed its phylogenetic position. Zoologischer Anzeiger 267: 151–154.

    Google Scholar 

  • Bláha, M., J. Patoka, B. Japoshvili, A. Kouba, M. Buřič & L. Mumladze, 2020. Genetic diversity, phylogenetic position and morphometric analysis of Astacus colchicus (Decapoda, Astacidae): a new insight into Eastern European crayfish fauna. Integrative Zoology. https://doi.org/10.1111/1749-4877.12493.

  • Buřič, M., M. Hulák, A. Kouba, A. Petrusek & P. Kozák, 2011. A successful crayfish invader is capable of facultative parthenogenesis: a novel reproductive mode in decapod crustaceans. PLoS ONE 6(5): e20281.

    PubMed  PubMed Central  Google Scholar 

  • Chucholl, C. & M. Pfeiffer, 2010. First evidence for an established Marmorkrebs (Decapoda, Astacida, Cambaridae) population in Southwestern Germany, in syntopic occurrence with Orconectes limosus (Rafinesque, 1817). Aquatic Invasions 5(4): 405–412.

    Google Scholar 

  • Chucholl, C., H. B. Stich & G. Maier, 2008. Aggressive interactions and competition for shelter between a recently introduced and an established invasive crayfish: Orconectes immunis vs. O. limosus. Fundamental and Applied Limnology 172(1): 27–36.

    Google Scholar 

  • Chucholl, C., K. Morawetz & H. Gross, 2012. The clones are coming - strong increase in Marmorkrebs Procambarus fallax (Hagen, 1870) f. virginalis records from Europe. Aquatic Invasions 7(4): 511–519.

    Google Scholar 

  • Correia, A. M. & P. M. Anastacio, 2008. Shifts in aquatic macroinvertebrate biodiversity associated with the presence and size of an alien crayfish. Ecological Research 23(4): 729–734.

    Google Scholar 

  • Crandall, K. A. & S. De Grave, 2017. An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. Journal of Crustacean Biology 37(5): 615–653.

    Google Scholar 

  • Cruz, M. J., P. Segurado, M. Sousa & R. Rebelo, 2008. Collapse of the amphibian community of the Paul do Boquilobo Natural Reserve (central Portugal) after the arrival of the exotic American crayfish Procambarus clarkii. Herpetological Journal 18(4): 197–204.

    Google Scholar 

  • Ercoli, F., T. J. Ruokonen, H. Hämäläinen & R. I. Jones, 2014. Does the introduced signal crayfish occupy an equivalent trophic niche to the lost native noble crayfish in boreal lakes? Biological Invasions 16(10): 2025–2036.

    Google Scholar 

  • Ercoli, F., T. J. Ruokonen, S. Koistinen, R. I. Jones & H. Hämäläinen, 2015. The introduced signal crayfish and native noble crayfish have different effects on sublittoral macroinvertebrate assemblages in boreal lakes. Freshwater Biology 60(8): 1688–1698.

    Google Scholar 

  • EU, 2014. Regulation (EU) No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Official Journal of the European Union 57(317): 35.

    Google Scholar 

  • EU, 2016. Commission Implementing Regulation (EU) 2016/1141 of 13 July 2016 adopting a list of invasive alien species of Union concern pursuant to Regulation (EU) No 1143/2014 of the European Parliament and of the Council. Official Journal of the European Union 189(4): 4–8.

    Google Scholar 

  • Garzoli, L., S. Mammola, M. Ciampittiello & A. Boggero, 2020. Alien crayfish species in the deep subalpine Lake Maggiore (NW-Italy), with a focus on the biometry and habitat preferences of the spiny-cheek crayfish. Water 12(5): 1391.

    Google Scholar 

  • Gebauer, R., J. Divíšek, M. Buřič, M. Večeřa, A. Kouba & B. Drozd, 2018. Distribution of alien animal species richness in the Czech Republic. Ecology and Evolution 8: 4455–4464.

    PubMed  PubMed Central  Google Scholar 

  • Gherardi, F., L. Aquiloni, J. Dieguez-Uribeondo & E. Tricarico, 2011. Managing invasive crayfish: is there a hope? Aquatic Sciences 73(2): 185–200.

    Google Scholar 

  • Grey, J. & M. C. Jackson, 2012. ‘Leaves and eats shoots’: Direct terrestrial feeding can supplement invasive red swamp crayfish in times of need. PLoS ONE 7(8): e42575.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hein, C. L., M. J. Vander Zanden & J. J. Magnuson, 2007. Intensive trapping and increased fish predation cause massive population decline of an invasive crayfish. Freshwater Biology 52(6): 1134–1146.

    Google Scholar 

  • Herrmann, A., A. Schnabler & A. Martens, 2018. Phenology of overland dispersal in the invasive crayfish Faxonius immunis (Hagen) at the Upper Rhine River area. Knowledge and Management of Aquatic Ecosystems 419: 30.

    Google Scholar 

  • Holdich, D. M., J. D. Reynolds, C. Souty-Grosset & P. J. Sibley, 2009. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowledge and Management of Aquatic Ecosystems 394–395: 11.

    Google Scholar 

  • Hudina, S., N. Galić, I. Roessink & K. Hock, 2011. Competitive interactions between co-occurring invaders: identifying asymmetries between two invasive crayfish species. Biological Invasions 13(8): 1791–1803.

    Google Scholar 

  • Hulme, P. E., 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. Journal of Applied Ecology 46(1): 10–18.

    Google Scholar 

  • Jackson, M. C., 2015. Interactions among multiple invasive animals. Ecology 96(8): 2035–2041.

    CAS  PubMed  Google Scholar 

  • Jackson, A. L., R. Inger, A. C. Parnell & S. Bearhop, 2011. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80(3): 595–602.

    Google Scholar 

  • Jackson, M. C., T. Jones, M. Milligan, D. Sheath, J. Taylor, A. Ellis, J. England & J. Grey, 2014. Niche differentiation among invasive crayfish and their impacts on ecosystem structure and functioning. Freshwater Biology 59(6): 1123–1135.

    Google Scholar 

  • James, J., J. Thomas, A. Ellis, K. Young, J. England & J. Cable, 2016. Over-invasion in a freshwater ecosystem: newly introduced virile crayfish (Orconectes virilis) outcompete established invasive signal crayfish (Pacifastacus leniusculus). Marine and Freshwater Behaviour and Physiology 49(1): 9–18.

    Google Scholar 

  • Kouba, A., A. Petrusek & P. Kozák, 2014. Continental-wide distribution of crayfish species in Europe: update and maps. Knowledge and Management of Aquatic Ecosystems 413: 5.

    Google Scholar 

  • Kozák, P., M. Buřič, T. Policar, J. Hamáčková & A. Lepičová, 2007. The effect of inter-and intra-specific competition on survival and growth rate of native juvenile noble crayfish Astacus astacus and alien spiny-cheek crayfish Orconectes limosus. Hydrobiologia 590(1): 85–94.

    Google Scholar 

  • Kozák, P., L. Füereder, A. Kouba, J. Reynolds & C. Souty-Grosset, 2011. Current conservation strategies for European crayfish. Knowledge and Management of Aquatic Ecosystems 401: 1.

    Google Scholar 

  • Larson, E. R., L. A. Twardochleb & J. D. Olden, 2017. Comparison of trophic function between the globally invasive crayfishes Pacifastacus leniusculus and Procambarus clarkii. Limnology 18(3): 275–286.

    CAS  Google Scholar 

  • Lele, S.-F. & L. Pârvulescu, 2017. Experimental evidence of the successful invader Orconectes limosus outcompeting the native Astacus leptodactylus in acquiring shelter and food. Biologia 72(8): 877–885.

    CAS  Google Scholar 

  • Linzmaier, S. M. & J. M. Jeschke, 2020. Towards a mechanistic understanding of individual-level functional responses: Invasive crayfish as model organisms. Freshwater Biology 65(4): 657–673.

    Google Scholar 

  • Linzmaier, S. M., L. S. Goebel, F. Ruland & J. M. Jeschke, 2018. Behavioral differences in an over-invasion scenario: marbled vs. spiny-cheek crayfish. Ecosphere 9(9): e02385.

    Google Scholar 

  • Linzmaier, S. M., C. Musseau, S. Matern & J. M. Jeschke, 2020. Trophic ecology of invasive marbled and spiny-cheek crayfish populations. Biological Invasions. https://doi.org/10.1007/s10530-020-02328-z.

    Article  Google Scholar 

  • Lipták, B., M. Mojžišová, D. Gruľa, J. Christophoryová, D. Jablonski, M. Bláha, A. Petrusek & A. Kouba, 2017. Slovak section of the Danube has its well-established breeding ground of marbled crayfish Procambarus fallax f. virginalis. Knowledge and Management of Aquatic Ecosystems 418: 40.

    Google Scholar 

  • Lipták, B., L. Veselý, F. Ercoli, M. Bláha, M. Buřič, T. Ruokonen & A. Kouba, 2019. Trophic role of marbled crayfish in a lentic freshwater ecosystem. Aquatic Invasions 14(2): 299–309.

    Google Scholar 

  • Lodge, D. M., A. Deines, F. Gherardi, D. C. J. Yeo, T. Arcella, A. K. Baldridge, M. A. Barnes, W. L. Chadderton, J. L. Feder, C. A. Gantz, G. W. Howard, C. L. Jerde, B. W. Peters, J. A. Peters, L. W. Sargent, C. R. Turner, M. E. Wittmann & Y. Zeng, 2012. Global introductions of crayfishes: evaluating the impact of species invasions on ecosystem services. Annual Review of Ecology, Evolution and Systematics 43: 449–472.

    Google Scholar 

  • Magoulick, D. D. & G. L. Piercey, 2016. Trophic overlap between native and invasive stream crayfish. Hydrobiologia 766(1): 237–246.

    Google Scholar 

  • Maguire, I., M. Podnar, M. Jelic, A. Stambuk, A. Schrimpf, H. Schulz & G. Klobucar, 2014. Two distinct evolutionary lineages of the Astacus leptodactylus species-complex (Decapoda: Astacidae) inferred by phylogenetic analyses. Invertebrate Systematics 28(2): 117–123.

    Google Scholar 

  • Mao, Z., X. Gu & Q. Zeng, 2016. Food sources and trophic relationships of three decapod crustaceans: insights from gut contents and stable isotope analyses. Aquaculture Research 47(9): 2888–2898.

    CAS  Google Scholar 

  • McCutchan, J. H., W. M. Lewis, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102(2): 378–390.

    CAS  Google Scholar 

  • Moore, J. W. & B. X. Semmens, 2008. Incorporating uncertainty and prior information into stable isotope mixing models. Ecology Letters 11(5): 470–480.

    PubMed  Google Scholar 

  • Olsson, K., P. Stenroth, P. Nyström & W. Graneli, 2009. Invasions and niche width: does niche width of an introduced crayfish differ from a native crayfish? Freshwater Biology 54(8): 1731–1740.

    Google Scholar 

  • Pacioglu, O., K. Theissinger, A. Alexa, C. Samoilă, O.-I. Sîrbu, A. Schrimpf, J. P. Zubrod, R. Schulz, M. Pîrvu & S.-F. Lele, 2020. Multifaceted implications of the competition between native and invasive crayfish: a glimmer of hope for the native’s long-term survival. Biological Invasions 22(2): 827–842.

    Google Scholar 

  • Pârvulescu, L., 2019. Introducing a new Austropotamobius crayfish species (Crustacea, Decapoda, Astacidae): a miocene endemism of the Apuseni Mountains, Romania. Zoologischer Anzeiger 279: 94–102.

    Google Scholar 

  • Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83(3): 703–718.

    Google Scholar 

  • Post, D. M., M. L. Pace & N. G. Hairston, 2000. Ecosystem size determines food-chain length in lakes. Nature 405(6790): 1047–1049.

    CAS  PubMed  Google Scholar 

  • R Core Team, 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria. http://www.R-project.org.

  • Ricciardi, A. & J. B. Rasmussen, 1999. Extinction rates of North American freshwater fauna. Conservation Biology 13(5): 1220–1222.

    Google Scholar 

  • Ruokonen, T., M. Kiljunen, J. Karjalainen & H. Hämäläinen, 2012. Invasive crayfish increase habitat connectivity: a case study in a large boreal lake. Knowledge and Management of Aquatic Ecosystems 407: 8.

    Google Scholar 

  • Ruokonen, T. J., J. Karjalainen & H. Hämäläinen, 2014. Effects of an invasive crayfish on the littoral macroinvertebrates of large boreal lakes are habitat specific. Freshwater Biology 59(1): 12–25.

    Google Scholar 

  • Seebens, H., T. M. Blackburn, E. E. Dyer, P. Genovesi, P. E. Hulme, J. M. Jeschke, S. Pagad, P. Pyšek, M. Winter & M. Arianoutsou, 2017. No saturation in the accumulation of alien species worldwide. Nature Communications 8: 14435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schrimpf, A., L. Parvulescu, D. Copilas-Ciocianu, A. Petrusek & R. Schulz, 2012. Crayfish plague pathogen detected in the Danube Delta - a potential threat to freshwater biodiversity in southeastern Europe. Aquatic Invasions 7(4): 503–510.

    Google Scholar 

  • Simberloff, D., 2011. How common are invasion-induced ecosystem impacts? Biological Invasions 13(5): 1255–1268.

    Google Scholar 

  • Smith, J. A., D. Mazumder, I. M. Suthers & M. D. Taylor, 2013. To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons. Methods in Ecology and Evolution 4(7): 612–618.

    Google Scholar 

  • Stenroth, P., N. Holmqvist, P. Nyström, O. Berglund, P. Larsson & W. Granéli, 2006. Stable isotopes as an indicator of diet in omnivorous crayfish (Pacifastacus leniusculus): the influence of tissue, sample treatment, and season. Canadian Journal of Fisheries and Aquatic Sciences 63(4): 821–831.

    CAS  Google Scholar 

  • Stock, B. C. & B. X. Semmens, 2016. Unifying error structures in commonly used biotracer mixing models. Ecology 97(10): 2562–2569.

    PubMed  Google Scholar 

  • Strayer, D. L., 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology 55: 152–174.

    Google Scholar 

  • Strayer, D. L. & D. Dudgeon, 2010. Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society 29(1): 344–358.

    Google Scholar 

  • Svoboda, J., A. Mrugała, E. Kozubíková-Balcarová & A. Petrusek, 2017. Hosts and transmission of the crayfish plague pathogen Aphanomyces astaci: a review. Journal of Fish Diseases 40(1): 127–140.

    CAS  PubMed  Google Scholar 

  • Tablado, Z., J. L. Tella, J. A. Sánchez-Zapata & F. Hiraldo, 2010. The paradox of the long-term positive effects of a North American crayfish on a European community of predators. Conservation Biology 24(5): 1230–1238.

    PubMed  Google Scholar 

  • Twardochleb, L. A., J. D. Olden & E. R. Larson, 2013. A global meta-analysis of the ecological impacts of nonnative crayfish. Freshwater Science 32(4): 1367–1382.

    Google Scholar 

  • Vander Zanden, M. & J. B. Rasmussen, 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46(8): 2061–2066.

    CAS  Google Scholar 

  • Vojkovská, R., I. Horká, E. Tricarico & Z. Ďuriš, 2014. New record of the parthenogenetic marbled crayfish Procambarus fallax f. virginalis from Italy. Crustaceana 87(11–12): 1386–1392.

    Google Scholar 

  • Vorburger, C. & G. Ribi, 1999. Aggression and competition for shelter between a native and an introduced crayfish in Europe. Freshwater Biology 42(1): 111–119.

    Google Scholar 

  • Weiperth, A., B. Gál, P. Kuříková, M. Bláha, A. Kouba & J. Patoka, 2017. Cambarellus patzcuarensis in Hungary: the first dwarf crayfish established outside of North America. Biologia 72(12): 1529–1532.

    Google Scholar 

  • Weiperth, A., M. Bláha, B. Szajbert, R. Seprős, Z. Bányai, J. Patoka, & Kouba, A., 2020. Hungary: a European hotspot of non-native crayfish biodiversity. Knowledge and Management of Aquatic Ecosystems 421: 43.

Download references

Acknowledgements

This study was supported by the Czech Science Foundation (No. 19-04431S), the Ministry of Education, Youth and Sports of the Czech Republic (CENAKVA, LM2018099), the National Research, Development and Innovation Office (No. NVKP 16-1-2016-0003) and the Estonian University of Life Sciences (No. P190254PKKH). The authors would like to thank Edit Répás, Veronika Gábris, Richárd Seprős and Zsombor Bányai for help with the fieldwork. We acknowledge Julian Reynolds for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonín Kouba.

Additional information

Handling editor: Lee B. Kats

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1060 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veselý, L., Ruokonen, T.J., Weiperth, A. et al. Trophic niches of three sympatric invasive crayfish of EU concern. Hydrobiologia 848, 727–737 (2021). https://doi.org/10.1007/s10750-020-04479-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04479-5

Keywords

Navigation