Skip to main content
Log in

Contrasting continental patterns and drivers of taxonomic and functional turnover among fish assemblages across Brazilian reservoirs

  • PERSPECTIVES ON SUSTAINABLE HYDRO-POWER
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In this paper, we investigated composition and trait turnover among fish assemblages in reservoirs distributed across major Brazilian basins, in order to contrast taxonomic and functional turnover and to investigate their respective drivers. We investigated the hypothesis that reservoir assemblages present, on a continental scale, divergent species compositions but with a similar set of traits. Species lists and functional traits were compiled from 79 reservoirs located in the Amazon, São Francisco, Paraná and Atlantic basins. We observed considerable variation in species and trait composition among reservoirs, with higher intra-basin similarity. Taxonomic turnover ranged between 0 and 1 (0.44 ± 0.22 SD), and functional turnover between 0 and 0.91 (0.37 ± 0.19); functional turnover correlated positively with taxonomic turnover, but showed lower values. Observed functional turnover values did not differ from null expectations, indicating lack of functional convergence. We detected significant effects of basin, longitude, latitude and elevation on turnover values, and the presence of non-native species was associated with either homogenization or differentiation patterns. Our results indicated that fish composition is heterogeneous among impoundments, providing little support to the hypothesis that reservoir assemblages are homogenized on a continental scale. Species and trait composition probably respond to multiple spatial, environmental and biogeographic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abell, R., M. L. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. C. Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, N. Sindorf, J. Robertson, E. Armijo, J. V. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. López, R. E. Reis, J. G. Lundberg, M. H. S. Pérez & P. Petry, 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58: 403–413.

    Google Scholar 

  • Abilhoa, V., R. R. Braga, H. Bornatowski & J. R. S. Vitule, 2011. Fishes of the atlantic rain forest streams: ecological patterns and conservation. In Grillo, O. (ed.), Changing Diversity in Changing Environment. InTech, Rijeka: 259–282.

    Google Scholar 

  • Agostinho, A. A., L. C. Gomes & F. M. Pelicice, 2007. Ecologia e Manejo de Recursos Pesqueiros em Reservatórios do Brasil. EDUEM, Maringá.

    Google Scholar 

  • Agostinho, A. A., L. C. Gomes, N. C. L. Santos, J. C. G. Ortega & F. M. Pelicice, 2016. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research 173: 26–36.

    Google Scholar 

  • Altermat, F., 2013. Diversity in riverine metacommunities: a network perspective. Aquatic Ecology 47: 365–377.

    Google Scholar 

  • Arantes, C. C., D. B. Fitzgerald, D. J. Hoeinghaus & K. O. Winemiller, 2019. Impacts of hydroelectric dams on fishes and fisheries in tropical rivers through the lens of functional traits. Current Opinion in Environmental Sustainability 37: 28–40.

    Google Scholar 

  • Bailly, D., F. A. S. Cassemiro, C. S. Agostinho, E. E. Marques & A. A. Agostinho, 2014. The metabolic theory of ecology convincingly explains the latitudinal diversity gradient of Neotropical freshwater fish. Ecology 95: 553–562.

    PubMed  Google Scholar 

  • Bailly, D., F. A. S. Cassemiro, K. O. Winemiller, J. A. F. Diniz-Filho & A. A. Agostinho, 2016. Diversity gradients of Neotropical freshwater fish: evidence of multiple underlying factors in human-modified systems. Journal of Biogeography 43: 1679–1689.

    Google Scholar 

  • Bezerra, L. A. V., V. M. Ribeiro, M. O. Freitas, L. Kaufman, A. A. Padial & J. R. S. Vitule, 2018. Benthification, biotic homogenization behind the trophic downgrading in altered ecosystems. Ecosphere 10(6): e02757.

    Google Scholar 

  • Bishop, T. R., M. P. Robertson, B. J. van Rensburg & C. L. Parr, 2015. Contrasting species and functional beta diversity in montane ant assemblages. Journal of Biogeography 42: 1776–1786.

    PubMed  PubMed Central  Google Scholar 

  • Brito, M. F. G., V. S. Daga & J. R. S. Vitule. In press. Fisheries and biotic homogenization of freshwater fish in the Brazilian semiarid region. Hydrobiologia.

  • Bitton, J. R. & M. L. Orsi, 2012. Non-native fish in aquaculture and sport fishing in Brazil: economic benefits versus risks to fish diversity in the upper River Paraná Basin. Reviews in Fish Biology and Fisheries 22: 555–565.

    Google Scholar 

  • Cardoso, C. C., P. Hart, C. E. C. Freitas & F. K. Siqueira-Souza, 2019. Diet and ecomorphology of predator fish species of the Amazonian floodplain lakes. Biota Neotropica 19(3): e20180678.

    Google Scholar 

  • Cardoso, P., F. Rigal, J. C. Carvalho, M. Fortelius, P. A. V. Borges, J. Podani & D. Schmera, 2014. Partitioning taxon, phylogenetic and functional beta diversity into replacement and richness difference components. Journal of Biogeography 41: 749–761.

    Google Scholar 

  • Cardoso, P., F. Rigal & J. C. Carvalho, 2018. BAT: Biodiversity Assessment Tools. R Package Version 1.6.0.

  • Chase, J. M., 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328: 1388–1391.

    CAS  PubMed  Google Scholar 

  • Cunico, A. M., J. D. Allan & A. A. Agostinho, 2011. Functional convergence of fish assemblages in urban streams of Brazil and the United States. Ecological Indicators 11: 1354–1359.

    Google Scholar 

  • Daga, V. S. & E. A. Gubiani, 2012. Variations in the endemic fish assemblage of a global freshwater ecoregion: associations with introduced species in cascading reservoirs. Acta Oecologica 41: 95–105.

    Google Scholar 

  • Daga, V., F. Skóra, A. A. Padial, V. Abilhoa, E. A. Gubiani & J. R. S. Vitule, 2015. Homogenization dynamics of the fish assemblages in Neotropical reservoirs: comparing the roles of introduced species and their vectors. Hydrobiologia 746: 327–347.

    Google Scholar 

  • Fricke, R., W. N. Eschmeyer & J. D. Fong, 2020. Eschmeyer’s catalog of fishes: Genera, Species, References. (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp). http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp. Accessed 13 July 2020.

  • Froese, R. & D. Pauly, 2016. FishBase. FAO, Rome.

    Google Scholar 

  • Fukami, T., T. M. Bezemer, S. R. Mortimer & W. H. van der Putten, 2005. Species divergence and trait convergence in experimental plant community assembly. Ecology Letters 8(12): 1283–1290.

    Google Scholar 

  • Garcia, D. A. Z., J. R. Britton, A. P. Vidotto-Magnoni & M. L. Orsi, 2018. Introductions of non-native fishes into a heavily modified river: rates, patterns and management issues in the Paranapanema River (Upper Paraná ecoregion, Brazil). Biological Invasions 20: 1229–1241.

    Google Scholar 

  • Gubiani, É. A., V. R. Ribeiro, R. Ruaro, A. C. A. Eichelberger, R. F. Bogoni, A. D. Lira, D. Cavalli, P. A. Piana & W. J. Graça, 2018. Non-native fish species in Neotropical freshwaters: how did they arrive, and where did they come from? Hydrobiologia 817: 57–69.

    Google Scholar 

  • Helfman, G. S., B. B. Collette & D. E. Facey, 2009. The diversity of fishes, 2nd ed. Wiley, Oxford.

    Google Scholar 

  • Hoeinghaus, D. J., K. O. Winemiller & J. S. Birnbaum, 2007. Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic vs. functional groups. Journal of Biogeography 34: 324–338.

    Google Scholar 

  • Hoeinghaus, D. J., A. A. Agostinho, L. C. Gomes, F. M. Pelicice, E. K. Okada, J. D. Latini, E. A. L. Kashiwaki & K. O. Winemiller, 2009. Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conservation Biology 23: 1222–1231.

    PubMed  Google Scholar 

  • Hugueny, B., 1989. West African rivers as biogeographic islands: species richness of fish communities. Oecologia 79: 236–243.

    PubMed  Google Scholar 

  • Johnson, P. T. J., J. D. Olden & M. J. V. Zanden, 2008. Dam invaders: impoundments facilitate biological invasions into freshwaters. Frontiers in Ecology 6: 357–363.

    Google Scholar 

  • Leprieur, F., P. A. Tedesco, B. Hugueny, O. Beauchard, H. H. Dürr, S. Brosse & T. Oberdorff, 2011. Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecology Letters 14: 325–334.

    PubMed  Google Scholar 

  • Leroy, B., M. S. Dias, E. Giraud, B. Hugueny, C. Jézéquel, F. Leprieur, T. Oberdorff & P. A. Tedesco, 2019. Global biogeographic regions of freshwater fish species. Journal of Biogeography 46: 2407–2419.

    Google Scholar 

  • Loures, R. C. & P. S. Pompeu, 2018. Long-term study of reservoir cascade in south-eastern Brazil reveals spatio-temporal gradient in fish assemblages. Marine and Freshwater Research 69(12): 1983–1994.

    CAS  Google Scholar 

  • Lujan, N. K., K. A. Roach, D. Jacobsen, K. O. Winemiller, V. M. Vargas, V. R. Ching & J. A. Maestre, 2013. Aquatic community structure across an Andes-to-Amazon fluvial gradient. Journal of Biogeography 40: 1715–1728.

  • Magalhães, A. L. B., M. Orsi, F. M. Pelicice, V. M. Azevedo-Santos, J. R. S. Vitule, D. P. Lima-Junior & M. F. G. Brito, 2017. Small size today, aquarium dumping tomorrow: sales of juvenile non-native large fish as an important threat in Brazil. Neotropical Ichthyology 15(4): e170033.

    Google Scholar 

  • Mouillot, D., N. A. J. Graham, S. Villéger, N. W. H. Mason & D. R. Bellwood, 2013. A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution 28(3): 167–177.

    PubMed  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2018. Vegan: community ecology package. R Package Version 2.5-3.

  • Oliveira, E. F., C. V. Minte-Vera & E. Goulart, 2005. Structure of fish assemblages along spatial gradients in a deep subtropical reservoir (Itaipu Reservoir, Brazil-Paraguay border). Environmental Biology of Fishes 72: 283–304.

    Google Scholar 

  • Ortega, J. C. G., H. F. Júlio Júnior, L. C. Gomes & A. A. Agostinho, 2015. Fish farming as the main driver of fish introductions in Neotropical reservoirs. Hydrobiologia 746: 147–158.

    Google Scholar 

  • Ortega, J. C. G., A. A. Agostinho, N. C. L. Santos, K. D. G. Luz-Agostinho, F. H. Oda, W. Severi & L. M. Bini, 2018. Similarities in correlates of native and introduced fish species richness distribution in Brazilian reservoirs. Hydrobiologia 817: 167–177.

    Google Scholar 

  • Pelicice, F. M., P. S. Pompeu & A. A. Agostinho, 2015. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries 16: 697–715.

    Google Scholar 

  • Pelicice, F. M., V. M. Azevedo-Santos, J. R. S. Vitule, M. L. Orsi, D. P. Lima-Junior, A. L. B. Magalhães, P. S. Pompeu, M. Petrere Jr. & A. A. Agostinho, 2017. Neotropical freshwater fishes imperilled by unsustainable policies. Fish and Fisheries 18: 1119–1133.

    Google Scholar 

  • Pelicice, F. M., V. M. Azevedo-Santos, A. L. H. Esguícero, A. A. Agostinho & M. S. Arcifa, 2018. Fish diversity in the cascade of reservoirs along the Paranapanema River, southeast Brazil. Neotropical Ichthyology 16(2): e170150.

    Google Scholar 

  • Perônico, P. B., C. S. Agostinho, R. Fernandes & F. M. Pelicice, 2020. Community reassembly after river regulation: rapid loss of fish diversity and the emergence of a new state. Hydrobiologia 847: 519–533.

    Google Scholar 

  • Petesse, M. L. & M. Petrere Jr., 2012. Tendency towards homogenization in fish assemblages in the cascade reservoir system of the Tietê river basin, Brazil. Ecological Engineering 48: 109–116.

    Google Scholar 

  • Pool, T. K. & J. D. Olden, 2012. Taxonomic and functional homogenization of an endemic desert fish fauna. Diversity and Distributions 18: 366–376.

    Google Scholar 

  • Pough, F. H., C. M. Janis & J. B. Heiser, 2008. A vida dos vertebrados. 2a edição. Atheneu Editora, São Paulo.

  • Pringle, C. M., M. C. Freeman & B. Freeman, 2000. Regional effects of hydrologic alterations on riverine macrobiota in the New World: tropical-temperate comparisons. Bioscience 50(9): 807–823.

    Google Scholar 

  • Queiroz-Sousa, J., E. M. Brambilla, J. R. Garcia-Ayala, F. A. Travassos, V. S. Daga, A. A. Padial & J. R. S. Vitule, 2018. Biology, ecology and biogeography of the South American silver croaker, an important Neotropical fish species in South America. Reviews in Fish Biology and Fisheries 28: 693–714.

    Google Scholar 

  • R Development Core Team, 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org.

  • Rahel, F. J. & R. L. McLaughlin, 2018. Selective fragmentation and the management of fish movement across anthropogenic barriers. Ecological Applications 28(8): 2066–2081.

    PubMed  Google Scholar 

  • Rodrigues, L., S. M. Thomaz, A. A. Agostinho & L. C. Gomes, 2005. Biocenoses em reservatórios: padrões espaciais e temporais. Editora RiMa, São Carlos.

    Google Scholar 

  • Santos, N. C. L., H. S. Santana, J. C. G. A. Ortega, R. M. Dias, L. F. Stegmann, I. M. S. Araújo, W. Severi, L. M. Bini, L. C. Gomes & A. A. Agostinho, 2017. Environmental filters predict the trait composition of fish communities in reservoir cascades. Hydrobiologia 802: 245–253.

    Google Scholar 

  • Schork, G. & E. Zaniboni-Filho, 2017. Structure dynamics of a fish community over ten years of formation in the reservoir of the hydroelectric power plant in upper Uruguay River. Brazilian Journal of Biology 77(4): 710–723.

    CAS  Google Scholar 

  • Toussaint, A., O. Beauchard, T. Oberdorff, S. Brosse & S. Villéger, 2016a. Worldwide freshwater fish homogenization is driven by a few widespread non-native species. Biological Invasions 18: 1295–1304.

    Google Scholar 

  • Toussaint, A., N. Charpin, S. Brosse & S. Villéger, 2016b. Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Scientific Reports 6: 22125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turgeon, K., C. Turpin & I. Greogry-Eaves, 2019. Dams have varying impacts on fish communities across latitudes: a quantitative synthesis. Ecology Letters 22: 1501–1516.

    PubMed  Google Scholar 

  • Swenson, N. G., 2014. Functional and phylogenetic ecology in R. Springer, New Youk.

    Google Scholar 

  • Van Damme, P. A., L. Córdova-Clavijo, C. Baigún, M. Hauser, C. R. C. Doria & F. Duponchelle, 2019. Upstream dam impacts on gilded catfish Brachyplatystoma rousseauxii (Siluriformes: Pimelodidae) in the Bolivian Amazon. Neotropical Ichthyology 17(4): e190118.

    Google Scholar 

  • Vitorino-Júnior, O. B., R. Fernandes, C. S. Agostinho & F. M. Pelicice, 2016. Riverine networks constrain b-diversity patterns among fish assemblages in a large Neotropical river. Freshwater Biology 61: 1733–1745.

    Google Scholar 

  • Vitule, J. R. S., F. Skóra & V. Abilhoa, 2012. Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Diversity and Distributions 18: 111–120.

    Google Scholar 

  • Winemiller, K. O., P. B. McIntyre, L. Castello, E. Fluet- Chouinard, T. Giarrizzo, S. Nam, I. G. Baird, W. Darwall, N. K. Lujan, I. Harrison, M. L. J. Stiassny, R. A. M. Silvano, D. B. Fitzgerald, F. M. Pelicice, A. A. Agostinho, L. C. Gomes, J. S. Albert, E. Baran, M. Petrere-Júnior, C. Zarfl, M. Mulligan, J. P. Sullivan, C. C. Arantes, L. M. Sousa, A. A. Koning, D. J. Hoeinghaus, M. Sabaj, J. G. Lundberg, J. Armbruster, M. L. Thieme, P. Petry, J. Zuanon, G. T. Vilara, J. Snoeks, C. Ou, W. Rainboth, C. S. Pavanelli, A. Akama, A. van Soesbergen & L. Saenz, 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351: 128–129.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Núcleo de Estudos Ambientais (Universidade Federal do Tocantins) and Programa de Pós-Graduação em Biodiversidade, Ecologia e Conservação (antigo Ecologia de Ecótonos) for providing infrastructure and support. We also thank Elaine A. Luiz (Universidade Estadual do Oeste do Paraná), Paulo S. Pompeu (Universidade Federal de Lavras) and Efrem J.G. Ferreira (Instituto Nacional de Pesquisas da Amazônia) for providing information on functional traits. We are deeply indebted to Angelo A. Agostinho (Universidade Estadual de Maringá) for providing unpublished data on 31 reservoirs. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPEs) provided a scholarship for L.S.D. and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) provided research Grants for F.M.P. and W.J.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Mayer Pelicice.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Ingeborg P. Helland, Michael Power, Eduardo G. Martins & Knut Alfredsen / Perspectives on the environmental implications of sustainable hydro-power

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelicice, F.M., da Silva Damasceno, L., de Almeida Ferreira, E. et al. Contrasting continental patterns and drivers of taxonomic and functional turnover among fish assemblages across Brazilian reservoirs. Hydrobiologia 849, 373–384 (2022). https://doi.org/10.1007/s10750-020-04388-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04388-7

Keywords

Navigation