Skip to main content
Log in

Trophic basis of production of stream detritivores shifts with reduced forest inputs

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Estimating changes in organic matter flow from resource to consumer using trophic basis of production (TBP) is a way to examine resource limitation effects on ecosystem function. We examined diet shifts and production of insect detritivores to assess changes with reduced detrital inputs to a forested headwater stream. Organic matter was excluded for 7 years using a canopy net. Small and large wood were removed from the stream after the 3rd and 5th year, respectively. Detritivore production declined after 3 years of litter exclusion. After wood removal, production of detritivores declined again. Steepest declines in Pycnopsyche gentilis production occurred within year 1. Tipula spp. and Tallaperla spp. production declined after wood removal. Diets shifted from leaves to wood to fine particulate organic matter (FPOM) for Tipula spp. and Tallaperla spp., but not for P. gentilis. Resource flows to detritivores shifted in the exclusion stream from leaves to wood to FPOM after leaf standing crops declined and wood removal. Small wood was an important food resource. TBP results showed shifts in food resource use by two detritivores with terrestrial input reduction. These findings suggest that maintaining diverse riparian inputs of organic matter is important for detritivore productivity in forested headwater watersheds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analzsed during this study are included in this published article and its supplementary information file.

References

  • Anderson, N. H. & A. S. Cargill, 1987. Nutritional ecology of aquatic detritivorous insects. In Slansky Jr., F. & J. G. Rodriguez (eds.), Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. Wiley, New York: 903–925.

    Google Scholar 

  • Anderson, N. H., R. J. Steedman & T. Dudley, 1984. Patterns of exploitation by stream invertebrates of wood debris (xylophagy). Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 22: 1847–1852.

    Google Scholar 

  • Benke, A. C., 1985. Importance of the snag habitat for animal production in a southeastern stream. Fisheries 10: 8–13.

    Article  Google Scholar 

  • Benke, A. C., 2018. River food webs: an integrative approach to bottom-up flow webs, top-down impact webs, and trophic position. Ecology 99: 1370–1381.

    Article  PubMed  Google Scholar 

  • Benke, A. C. & J. B. Wallace, 1980. Trophic basis of production among net-spinning caddisflies in a southern Appalachian stream. Ecology 61: 108–118.

    Article  Google Scholar 

  • Benke, A. C. & J. B. Wallace, 1997. Trophic basis of production among riverine caddisflies: implications for food web analysis. Ecology 78: 1132–1145.

    Article  Google Scholar 

  • Benke, A. C., J. B. Wallace, J. W. Harrison & J. W. Koebel, 2001. Food web quantification using secondary production analysis: predaceous invertebrates of the snag habitat in a subtropical river. Freshwater Biology 46: 329–346.

    Article  Google Scholar 

  • Couch, C. A. & J. L. Meyer, 1992. Development and composition of the epixylic biofilm in a blackwater river. Freshwater Biology 27: 43–51.

    Article  Google Scholar 

  • Cummins, K. W., 1973. Trophic relations of aquatic insects. Annual Review of Entomology 18: 183–206.

    Article  Google Scholar 

  • Dangles, O., 2002. Functional plasticity of benthic macroinvertebrates: implications for trophic dynamics in acid streams. Canadian Journal of Fisheries and Aquatic Sciences 59: 1563–1573.

    Article  Google Scholar 

  • Eggert, S. L. & J. B. Wallace, 2007. Wood biofilm as a food resource for stream detritivores. Limnology and Oceanography 52: 1239–1245.

    Article  Google Scholar 

  • Eggert, S. L., J. B. Wallace, J. L. Meyer & J. R. Webster, 2012. Storage and export of organic matter in a headwater stream: responses to long-term detrital manipulations. Ecosphere 3(9): 75.

    Article  Google Scholar 

  • Fisher, S. G. & G. E. Likens, 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecological Monographs 43: 421–439.

    Article  Google Scholar 

  • Grubbs, S. A. & K. W. Cummins, 1996. Linkages between riparian forest composition and shredder voltinism. Archiv für Hydrobiologie 137: 39–58.

    Google Scholar 

  • Hall, R. O., J. B. Wallace & S. L. Eggert, 2000. Organic matter flow in stream food webs with reduced detrital resource base. Ecology 81: 3445–3463.

    Article  Google Scholar 

  • Hax, C. L. & S. W. Golladay, 1993. Macroinvertebrate colonization and biofilm development on leaves and wood in a boreal river. Freshwater Biology 29: 79–87.

    Article  Google Scholar 

  • Hoffman, A. & D. Hering, 2000. Wood-associated macroinvertebrate fauna in central European streams. International Review of Hydrobiology 85: 25–48.

    Article  Google Scholar 

  • Hutchens, J. J., E. F. Benfield & J. R. Webster, 1997. Diet and growth of a leaf-shredding caddisfly in southern Appalachian streams of contrasting disturbance history. Hydrobiologia 346: 193–201.

    Article  Google Scholar 

  • Klug, M. J. & S. Kotarski, 1980. Bacteria associated with the gut tract of larval stages of aquatic cranefly Tipula abdominalis (Diptera; Tipulidae). Applied and Environmental Microbiology 40: 408–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson, D. L., M. J. Klug & R. W. Merritt, 1984. The influence of the physical, chemical, and microbiological characteristics of decomposing leaves on the growth of the detritivore Tipula abdominalis (Diptera: Tipulidae). Canadian Journal of Zoology 62: 2339–2343.

    Article  Google Scholar 

  • Loreau, M., 2000. Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91: 3–17.

    Article  Google Scholar 

  • Lugthart, G. J. & J. B. Wallace, 1992. Effects of disturbance on benthic functional structure and production in mountain streams. Journal of the North American Benthological Society 11: 138–164.

    Article  Google Scholar 

  • Mackay, R. J. & J. Kalff, 1973. Ecology of two related species of caddis fly larvae in the organic substrates of a woodland stream. Ecology 54: 499–511.

    Article  Google Scholar 

  • Martin, M. M., J. S. Martin, J. J. Kukor & R. W. Merritt, 1980. The digestion of protein and carbohydrate by the stream detritivore, Tipula abdominalis (Diptera: Tipulidae). Oecologia 46: 360–364.

    Article  CAS  PubMed  Google Scholar 

  • McCann, K. & A. Hastings, 1997. Re-evaluating the omnivory-stability relationship in food webs. Proceedings of the Royal Society of London Series B 264: 1249–1254.

    Article  Google Scholar 

  • McCann, K., A. Hastings & G. R. Huxel, 1998. Weak trophic interactions and the balance of nature. Nature 395: 794–798.

    Article  CAS  Google Scholar 

  • McCann, K. S. & N. Rooney, 2009. The more food webs change, the more they stay the same. Philosophical Transactions of the Royal Society of London B: Biological Sciences 364: 1789–1801.

    Article  PubMed  Google Scholar 

  • Richardson, J. S., 1991. Seasonal food limitation of detritivores in a montane stream: an experimental test. Ecology 72: 873–887.

    Article  Google Scholar 

  • Roeding, C. E. & L. A. Smock, 1989. Ecology of macroinvertebrate shredders in a low-gradient sandy-bottomed stream. Journal of the North American Benthological Society 8: 149–161.

    Article  Google Scholar 

  • Rosi-Marshall, E. J. & J. B. Wallace, 2002. Invertebrate food webs along a stream resource gradient. Freshwater Biology 47: 129–141.

    Article  Google Scholar 

  • Sinsabaugh, R. L., A. E. Linkins & E. F. Benfield, 1985. Cellulose digestion and assimilation by three leaf-shredding aquatic insects. Ecology 66: 1464–1471.

    Article  CAS  Google Scholar 

  • Smock, L. A. & C. E. Roeding, 1986. The trophic basis of production of the macroinvertebrate community of a southeastern U.S.A. blackwater stream. Holarctic Ecology 9: 165–174.

    Google Scholar 

  • Stewart-Oaten, A., W. W. Murdoch & K. R. Parker, 1986. Environmental impact assessment: pseudoreplication in time? Ecology 67: 929–940.

    Article  Google Scholar 

  • Tank J. L., 1996. Microbial activity on wood in streams: Exploring abiotic and biotic factors affecting the structure and function of wood biofilms. Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

  • Tank, J. L. & J. R. Webster, 1998. Interaction of substrate availability and nutrient distribution on wood biofilm development in streams. Ecology 79: 2168–2179.

    Article  Google Scholar 

  • Tank, J. L., J. R. Webster & E. F. Benfield, 1993. Microbial respiration on decaying leaves and sticks in a southern Appalachian stream. Journal of the North American Benthological Society 12: 394–405.

    Article  Google Scholar 

  • Tank, J. L., J. R. Webster & E. F. Benfield, 1998. Effect of leaf litter exclusion on microbial enzyme activity associated with wood biofilms in streams. Journal of the North American Benthological Society 17: 95–103.

    Article  Google Scholar 

  • Tank, J. L. & M. J. Winterbourn, 1995. Biofilm development and invertebrate colonization of wood in four New Zealand streams of contrasting pH. Freshwater Biology 34: 303–315.

    Article  Google Scholar 

  • Tank, J. L. & M. J. Winterbourn, 1996. Heterotrophic activity and invertebrate colonization of wood in a New Zealand forest stream. New Zealand Journal of Marine and Freshwater Research 30: 271–280.

    Article  CAS  Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102–104.

    Article  CAS  Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1999. Effects of resource limitation on a detrital-based ecosystem. Ecological Monographs 69: 409–442.

    Article  Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 2000. Small wood dynamics in a headwater stream. Proceedings of the International Association of Theoretical and Applied Limnology 27: 1361–1365.

    Google Scholar 

  • Wallace, J. B., J. R. Webster, S. L. Eggert, J. L. Meyer & E. R. Siler, 2001. Large woody debris in a headwater stream: long-term legacies of forest disturbance. International Review of Hydrobiology 86: 501–513.

    Article  Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 2015. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data. Ecology 96: 1213–1228.

    Article  PubMed  Google Scholar 

  • Webster, J. R. & J. L. Meyer, 1997. Stream organic matter budgets: an introduction. Journal of the North American Benthological Society 16: 3–13.

    Article  Google Scholar 

  • White, T. C. R., 1978. The importance of a relative shortage of food in animal ecology. Oecologia 33: 71–86.

    Article  CAS  PubMed  Google Scholar 

  • Yachi, S. & M. Loreau, 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the Natural Academy of Sciences 96: 1463–1466.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the technicians and students that assisted with this study. Special thanks to C. Wallace for digitizing many insect gut contents. S. Golladay, A. Rosemond, D. Batzer, M. Moretti, and two anonymous reviewers provided helpful comments that improved this paper. W. Swank, J. Vose, and B. Kloeppel at Coweeta Hydrologic Laboratory provided site support. The National Science Foundation (Grants DEB-9207498, DEB-9629268, and DEB-0212315) funded this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Eggert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Marcelo S. Moretti

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eggert, S.L., Wallace, J.B., Meyer, J.L. et al. Trophic basis of production of stream detritivores shifts with reduced forest inputs. Hydrobiologia 847, 3091–3101 (2020). https://doi.org/10.1007/s10750-020-04317-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04317-8

Keywords

Navigation