Skip to main content
Log in

Using stable isotope approach to quantify pond dam impacts on isotopic niches and assimilation of resources by invertebrates in temporary streams: a case study

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Fishponds built across streams can greatly affect their functioning, especially through loss of ecological continuity but also changes in water availability and trophic resources. Yet, their consequences on communities and stream functioning remain largely understudied. We investigated effects of fishpond dams on the trophic ecology of macroinvertebrate communities in temporary low-order streams using C and N stable isotopes. Food resources and macroinvertebrates were sampled in one upstream and one downstream site of two temporary streams, one stream without (reference stream) versus one with a fishpond (impacted stream) and used for isotopic analyses. Results suggested moderate effects of fishponds on the upstream tributaries. In contrast, at the downstream impacted site, ten times higher macroinvertebrate biomass and modifications in the trophic niches were recorded, likely due to changes in resource availability/quality and dam-related hydrology. By modifying the food sources as well as water fluxes, fishpond dams tend to alter macroinvertebrate communities but also shift the trophic dynamics downstream. This assessment stresses the need for exploring their impacts on food webs and nutrient fluxes at larger downstream distances to better understand their effects before drawing conclusions in regard to their management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acuña, V., I. Muñoz, A. Giorgi, M. Omella, F. Sabater & S. Sabater, 2005. Drought and postdrought recovery cycles in an intermittent Mediterranean stream: structural and functional aspects. Journal of the North American Benthological Society 24: 919–933.

    Article  Google Scholar 

  • Aubin J., H. Rey-Valette S. Mathé M. Legendre J. Slembrouck, E. Chia, G. Masson, M. Callier, J.-P. Blancheton, A. Tocqueville, D. Caruso & P. Fontaine, 2014. Guide de mise en œuvre de l’intensification écologique pour les systèmes aquacoles. Inra-Rennes. 131 p.

  • Banas, D. & G. Masson, 2003. New plate sediment traps for lentic systems. Archiv für Hydrobiologie 158: 283–288.

    Article  Google Scholar 

  • Banas, D., G. Masson, L. Leglize & J. C. Pihan, 2002. Discharge of sediments, nitrogen (N) and phosphorus (P) during the emptying of extensive fishponds: effect of rain-fall and management practices. Hydrobiologia 472: 29–38.

    Article  CAS  Google Scholar 

  • Banas, D., G. Masson, L. Leglize, P. Usseglio-Polatera & C. E. Boyd, 2008. Assessment of sediment concentration and nutrients loads in effluents drained from extensively-managed fishponds in France. Environmental Pollution 152: 679–685.

    Article  CAS  Google Scholar 

  • Bearhop, S., C. E. Adams, S. Waldron, R. A. Fuller & H. MacLeod, 2004. Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology 73: 1007–1012.

    Article  Google Scholar 

  • Boecklen, W. J., C. T. Yarnes, B. A. Cook & A. C. James, 2011. On the Use of Stable Isotopes in Trophic Ecology. Annual Review of Ecology, Evolution, and Systematics 42: 411–440.

    Article  Google Scholar 

  • Brett, M., 2014. Resource polygon geometry predicts Bayesian stable isotope mixing model bias. Marine Ecology Progress Series 514: 1–12.

    Article  Google Scholar 

  • Brett, M. T., M. J. Kainz, S. J. Taipale & H. Seshan, 2009. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proceedings of the National Academy of Sciences 106: 21197–21201.

    Article  CAS  Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    Article  Google Scholar 

  • Bunn, S. E., P. M. Davies & T. D. Mosisch, 1999. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshwater Biology 41: 333–345.

    Article  Google Scholar 

  • Caut, S., E. Angulo & F. Courchamp, 2009. Variation in discrimination factors (Δ 15 N and Δ 13 C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology 46: 443–453.

    Article  CAS  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Austral Ecology 18: 117–143.

    Article  Google Scholar 

  • Cogo, G., C. Biasi & S. Santos, 2014. The effect of the macroconsumer Aegla longirostri (Crustacea, Decapoda) on the invertebrate community in a subtropical stream. Acta Limnologica Brasiliensia 26: 143–153.

    Article  Google Scholar 

  • Convention on Wetlands of International Importance especially as Waterfowl Habitat, 1971. Ramsar (Iran). UN Treaty Series No. 14583.

  • Costantini, M. L., E. Calizza & L. Rossi, 2014. Stable isotope variation during fungal colonisation of leaf detritus in aquatic environments. Fungal Ecology 11: 154–163.

    Article  Google Scholar 

  • Crenier, C., J. Arce Funck, A. Bec, F. Perrière, E. Billoir, J. Leflaive, F. Guérold, V. Felten & M. Danger, 2017. Minor food sources can play a major role in secondary production in detritus-based ecosystems. Freshwater Biology. 62(7): 1155–1167. https://doi.org/10.1111/fwb.12933.

    Article  CAS  Google Scholar 

  • Cucherousset, J. & S. Villéger, 2015. Quantifying the multiple facets of isotopic diversity: new metrics for stable isotope ecology. Ecological Indicators 56: 152–160.

    Article  CAS  Google Scholar 

  • de Castro, D. M. P., D. R. de Carvalho, P. dos Santos Pompeu, M. Z. Moreira, G. B. Nardoto & M. Callisto, 2016. Land use influences niche size and the assimilation of resources by benthic macroinvertebrates in tropical headwater streams. PLoS ONE 11: e0150527.

    Article  Google Scholar 

  • Danger, M., J. Cornut, E. Chauvet, P. Chavez, A. Elger & A. Lecerf, 2013. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology 94: 1604–1613.

    Article  Google Scholar 

  • Dodds, W. K. & M. R. Whiles, 2010. Freshwater Ecology: Concepts and Environmental Applications of Limnology, 2nd ed. Elsevier Science Publishing Co Inc, Amsterdam.

    Google Scholar 

  • Doucett, R. R., J. C. Marks, D. W. Blinn, M. Caron & B. A. Hungate, 2007. Measuring terrestrial subsidies to aquatic food webs using stable isotopes of hydrogen. Ecology 88: 1587–1592.

    Article  Google Scholar 

  • Elosegi, A. & S. Sabater, 2013. Effects of hydromorphological impacts on river ecosystem functioning: a review and suggestions for assessing ecological impacts. Hydrobiologia 712: 129–143.

    Article  Google Scholar 

  • European Union, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Union, Brussels, Belgium. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000 L0060

  • Finlay, J. C. & C. Kendall, 2007. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. Stable isotopes in ecology and environmental science 2: 283–333.

    Article  Google Scholar 

  • Fisher, S. G. & G. E. Likens, 1973. Energy flow in bear brook, new hampshire: an integrative approach to stream ecosystem metabolism. Ecological Monographs 43: 421–439.

    Article  Google Scholar 

  • Four, B., E. Arce, M. Danger, J. Gaillard, M. Thomas & D. Banas, 2017a. Catchment land use-dependent effects of barrage fishponds on the functioning of head water streams. Environmental Science and Pollution Research 24: 5452–5468.

    Article  CAS  Google Scholar 

  • Four, B., M. Thomas, E. Arce, A. Cébron, M. Danger & D. Banas, 2017b. Fishpond dams affect leaf-litter processing and associated detritivore communities along intermittent low-order streams. Freshwater Biology 62: 1741–1755. https://doi.org/10.1111/fwb.12984.

    Article  CAS  Google Scholar 

  • Fry, B., 2008. Stable Isotope Ecology, 3rd ed. Springer, New York.

    Google Scholar 

  • Fry, B., 2013. Alternative approaches for solving underdetermined isotope mixing problems. Marine Ecology Progress Series 472: 1–13.

    Article  CAS  Google Scholar 

  • Gaillard, J., M. Thomas, A. Iuretig, C. Pallez, C. Feidt, X. Dauchy & D. Banas, 2016a. Barrage fishponds: reduction of pesticide concentration peaks and associated risk of adverse ecological effects in headwater streams. Journal of Environmental Management 169: 261–271.

    Article  CAS  Google Scholar 

  • Gaillard, J., M. Thomas, A. Lazartigues, B. Bonnefille, C. Pallez, X. Dauchy, C. Feidt & D. Banas, 2016b. Potential of barrage fish ponds for the mitigation of pesticide pollution in streams. Environmental Science and Pollution Research 23(1): 23–35.

    Article  CAS  Google Scholar 

  • Gan, J. J., P. C. Zhu, S. D. Aust & A. T. Lemley, 2004. Pesticide Decontamination and Detoxification. ACS Symposium Series; American Chemical Society: Washington, DC, United States of America.

  • González, J. M., S. Molla, N. Roblas, E. Descals, O. Moya & C. Casado, 2013. Small dams decrease leaf litter breakdown rates in Mediterranean mountain streams. Hydrobiologia 712: 117–128.

    Article  Google Scholar 

  • Guenet, B., M. Danger, L. Abbadie & G. Lacroix, 2010. Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91: 2850–2861.

    Article  Google Scholar 

  • Guilpart, A., J.-M. Roussel, J. Aubin, T. Caquet, M. Marle & H. Le Bris, 2012. The use of benthic invertebrate community and water quality analyses to assess ecological consequences of fish farm effluents in rivers. Ecological Indicators 23: 356–365.

    Article  CAS  Google Scholar 

  • Hameed, A., S. Ahmad, R. T. Ahmad & H. Karar, 2011. Pesticide detoxification in invertebrates, plants and microbes. Life Sciences International Journal 5: 2186–2194.

    Google Scholar 

  • Hastie, T. J. & D. Pregibon, 1992. Generalized linear models. Chapter 6 of Statistical Models in S. eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

  • Jacob, U., K. Mintenbeck, T. Brey, R. Knust & K. Beyer, 2005. Stable isotope food web studies: a case for standardized sample treatment. Marine Ecology Progress Series 287: 251–253.

    Article  Google Scholar 

  • Kuehn, K. A., S. N. Francoeur, R. H. Findlay & R. K. Neely, 2014. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers. Ecology 95: 749–762.

    Article  Google Scholar 

  • Layman, C. A., M. S. Araujo, R. Boucek, C. M. Hammerschlag-Peyer, E. Harrison, Z. R. Jud, P. Matich, A. E. Rosenblatt, J. J. Vaudo, L. A. Yeager, D. M. Post & S. Bearhop, 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biological Reviews 87: 545–562.

    Article  Google Scholar 

  • Majdi, N., N. Hette-Tronquart, E. Auclair, A. Bec, T. Chouvelon, B. Cognie, M. Danger, P. Decottignies, A. Dessier, C. Desvilettes, S. Dubois, C. Dupuy, C. Fritsch, C. Gaucherel, M. Hedde, F. Jabot, S. Lefebvre, M. P. Marzloff, B. Pey, N. Peyrard, T. Powolny, R. Sabbadin, E. Thébault & M.-E. Perga, 2018. There’s no harm in having too much: a comprehensive toolbox of methods in trophic ecology. Food webs 16: e00100.

    Article  Google Scholar 

  • Martinez Arbizu, P., 2017. pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.0.1.

  • Martínez, A., A. Larranaga, A. Basaguren, J. Pérez, C. Mendoza-Lera & J. Pozo, 2013. Stream regulation by small dams affects benthic macroinvertebrate communities: from structural changes to functional implications. Hydrobiologia 711: 31–42.

    Article  Google Scholar 

  • Mathé, S. & H. Rey-Valette, 2015. Local knowledge of pond fish-farming ecosystem services: management implications of stakeholders’ perceptions in three different contexts (Brazil, France and Indonesia). Sustainability 7: 7644–7666.

    Article  Google Scholar 

  • McArdle, B. H. & M. J. Anderson, 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290–297.

    Article  Google Scholar 

  • McCarthy, J., W. Taylor & J. Taft, 1984. Geothermal and cold springs faunas: inorganic carbon sources affect isotope values. Marine Biology 65: 49–60.

    Google Scholar 

  • Menendez, M., E. Descals, T. Riera & O. Moya, 2012. Effect of small reservoirs on leaf litter decomposition in Mediterranean headwater streams. Hydrobiologia 691: 135–146.

    Article  Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An introduction to the aquatic insects of North America, 3rd ed. Kendall/Hunt, Duduque, Iowa.

    Google Scholar 

  • Millennium Ecosystem Assessment (Program) ed. 2005. Ecosystems and human well-being: synthesis. Island Press, Washington, DC.

  • Nelson, D., 2011. Gammarus-microbial interactions: a review. International Journal of Zoology 2011: 6.

    Article  Google Scholar 

  • Nõges, T., H. Luup & T. Feldmann, 2010. Primary production of aquatic macrophytes and their epiphytes in two shallow lakes (Peipsi and Võrtsjärv) in Estonia. Aquatic Ecology 44: 83–92.

    Article  Google Scholar 

  • Oertli, B. & P.-A. Frossard, 2013. Mares et étangs—Ecologie, gestion, aménagement et valorisation. Presses Polytechniques et universitaires romandes.

  • Parnell, A. C., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5: E9672.

    Article  Google Scholar 

  • Perga, M.-E, 2004. Etude de l’origine du carbone des réseaux trophiques lacustres à partir des compositions isotopiques du carbone et de l’azote des poissons et du zooplancton. Université de Savoie.

  • Perkins, M. J., R. A. McDonald, F. J. F. van Veen, S. D. Kelly, G. Rees & S. Bearhop, 2014. Application of nitrogen and carbon stable isotopes (δ15 N and δ13C) to quantify food chain length and trophic structure. PLoS ONE 9: e93281.

    Article  Google Scholar 

  • Pinet, F. & C. Hélan, 2015. La Caldésie à feuilles de parnassie. Une plante d’importance européenne dans les étangs de la Brenne (Indre - France); témoin possible d’une histoire des étangs. In: Mieux comprendre les étangs. Expériences nationales et internationales. Du Berry Limousin à l’Europe Orientale. Les Monédières. pp. 171–179. eds Touchart, L., P. Bartout & O. Motchalova.

  • Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • Rasmussen, J. B., 2010. Estimating terrestrial contribution to stream invertebrates and periphyton using a gradient-based mixing model for δ 13 C. Journal of Animal Ecology 79: 393–402.

    Article  Google Scholar 

  • Rosemond, A. D., C. M. Pringle & A. Ramirez, 1998. Macroconsumer effects on insect detritivores and detritus processing in a tropical stream. Freshwater Biology 39: 515–523.

    Article  Google Scholar 

  • Searle, S. R., F. M. Speed & G. A. Milliken, 1980. Population marginal means in the linear model: an alternative to least squares means. The American Statistician 34: 216–221.

    Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry. Princeton University Press, Princeton, USA.

    Google Scholar 

  • Tachet, H., F. Richoux, M. Bournaud & P. Usseglio-Polatera, 2010. Invertébrés d’eau douce : systématique, biologie, écologie. CNRS, Paris (FR).

    Google Scholar 

  • Thorp, J. H. & M. D. Delong, 1994. The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70: 305.

    Article  Google Scholar 

  • Tibi, A. & O. Therond, 2017. Evaluation des services écosystémiques rendus par les écosystèmes agricoles. Une contribution au programme EFESE. Synthèse du rapport d’étude, Inra (France): 118.

  • Torremorell, A., M. E. Llames, G. L. Pérez, R. Escaray, J. Bustingorry & H. Zagarese, 2009. Annual patterns of phytoplankton density and primary production in a large, shallow lake: the central role of light. Freshwater Biology 54: 437–449.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Elsevier Science Publishing Co Inc., Amsterdam.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this project by the ‘Agence de l’Eau Rhin-Meuse’ and the ‘Zone Atelier Moselle’. We sincerely thank E. Arce, P. Chaud, B. Le Carrer and Y. Namokel for their field and laboratory work, as well as the fish farmers, the ‘Office National des Forêts’ for providing us with access permits for sampling. We are also extremely grateful to the INRA of Champenoux for allowing us to use the laboratory facilities and conduct the stable isotope analysis at PTEF OC 081 from the UMR 1137 and UR 1138. The PTEF facility is supported by the French National Research Agency through the Laboratory of Excellence ARBRE (ANR-11-LABX-0002-01). We also want to thank the three anonymous reviewers and the associate editor, M. M. Sánchez-Montoya, who help to improve this final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Four.

Additional information

Handling editor: María del Mar Sánchez-Montoya

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Four, B., Thomas, M., Danger, M. et al. Using stable isotope approach to quantify pond dam impacts on isotopic niches and assimilation of resources by invertebrates in temporary streams: a case study. Hydrobiologia 834, 163–181 (2019). https://doi.org/10.1007/s10750-019-3920-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-3920-0

Keywords

Navigation