Skip to main content

Advertisement

Log in

Assessing the potential health risk of cyanobacteria and cyanotoxins in Lake Naivasha, Kenya

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study discerned the causes of cyanobacteria blooms in Lake Naivasha (Kenya). We hypothesized that phytoplankton and cyanobacteria biomass respond to hydrologic cycles, peaking during the wet season, and that microcystin (MC) concentrations are highest following the bloom collapse. Hydrologic loading (inferred from rainfall and lake level changes) and phytoplankton responses in two basins of the lake were monitored over a wet season followed by a dry season between September 2010 and March 2011. Results show that both phytoplankton and cyanobacteria biomass peaked in both basins during the wet season, with associated peaks in particulate MC concentrations. Even though phytoplankton and cyanobacteria biomass were higher in the smaller deep basin, MC concentrations were lower than in the large shallow basin. The high-MC levels during the wet season were followed by a greater MC production per cyanobacteria biomass unit in the dry season in both basins. The timing of the cyanobacteria bloom suggests that its formation was likely controlled by large nutrient influxes from the contributing catchment to the lake associated with intense rainfall following an intense drought, posing a risk to the health of the community due to increased MC levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source Satellite Image credit: ASA/GSFC/METI/Japan Space Systems, and U.S./Japan ASTER Science Team (http://asterweb.jpl.nasa.gov/gallery-detail.asp?name=naivasha)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexova, R., T. C. Dang, M. Fujii, M. J. Raftery, T. D. Waite, B. C. Ferrari & B. A. Neilan, 2016. Specific global responses to N and Fe nutrition in toxic and non-toxic Microcystis aeruginosa. Environmental Microbiology 18: 401–413.

    CAS  PubMed  Google Scholar 

  • Arcanjo, M., 2018. Delaying Day Zero: Fighting Back Against Water Insecurity. A Climate Institute Publication, Washington, DC.

    Google Scholar 

  • Beadle, L. C., 1932. Scientific results of the Cambridge Expedition to the East African Lakes 1930-1-4. The waters of some East African Lakes in relation to their fauna and flora. Zoological Journal of the Linnaean Society 38: 157–211.

    Google Scholar 

  • Besada, H. & K. Werner, 2015. An assessment of the effects of Africa’s water crisis on food security and management. International Journal of Water Resources Development 31: 120–133.

    Google Scholar 

  • Beversdorf, L. J., T. R. Miller & K. D. McMahon, 2013. The role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lake. PloS ONE 8: e56103.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bracken, L. J., J. Wainwright, G. Ali, D. Tetzlaff, M. W. Smith, S. M. Reaney & A. G. Roy, 2013. Concepts of hydrological connectivity: research approaches, pathways and future agendas. Earth-Science Reviews 119: 17–34.

    Google Scholar 

  • Buratti, F. M., M. Manganelli, S. Vichi, M. Stefanelli, S. Scardala, E. Testai & E. Funari, 2017. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Archives of Toxicology 91: 1049–1130.

    CAS  PubMed  Google Scholar 

  • Carmichael, W. W., 2001. Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Human Ecology and Risk Assessment 7: 1303–1407.

    Google Scholar 

  • Carmichael, W. W. & G. L. Boyer, 2016. Health impacts from cyanobacteria harmful algae blooms: implications for the North American Great Lakes. Harmful Algae 54: 194–212.

    PubMed  Google Scholar 

  • Chen, J., P. Xie, L. Li & J. Xu, 2009. First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicological Sciences 108: 81–89.

    CAS  PubMed  Google Scholar 

  • Davies Jr., P. M., S. E. Bunn Jr. & S. K. Hamilton Jr., 2008. Primary production in tropical streams and rivers. In Dudgeon, D. (ed.), Tropical Stream Ecology. Academic Press, San Diego: 23–42.

    Google Scholar 

  • Davis, T. W., D. L. Berry, G. L. Boyer & G. J. Gobler, 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8: 715–725.

    CAS  Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12.

    CAS  Google Scholar 

  • Fastner, J., I. Flieger & U. Neruman, 1998. Optimized extraction of microcystins from field samples – a comparison of different solvents and procedures. Water Resources 32: 3177–3181.

    CAS  Google Scholar 

  • Fujii, M., A. L. Rose & T. D. Waite, 2011. Iron uptake by toxic and nontoxic strains of Microcystis aeruginosa. Applied Environmental Microbiology 77: 7068–7071.

    CAS  PubMed  Google Scholar 

  • Gobler, C. J., J. M. Burkholder, T. W. Davis, M. J. Harke, T. Johengen, C. A. Stow & D. B. Van de Waal, 2016. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacteria blooms. Harmful Algae 54: 87–97.

    CAS  PubMed  Google Scholar 

  • Harke, M. J., M. M. Steffen, C. J. Gobler, T. G. Otten, S. W. Wilhelm, S. A. Wood & H. W. Paerl, 2016. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54: 4–20.

    PubMed  Google Scholar 

  • Harper, D. M., 1992. The ecological relationships of aquatic plants at Lake Naivasha, Kenya. Hydrobiologia 232: 65–71.

    CAS  Google Scholar 

  • Harper, D. M., G. Phillips, A. Chilvers, N. Kitaka & K. Mavuti, 1993. Eutrophication prognosis for Lake Naivasha. Internationale Vereinigung für Theoretische und Angewandte Limnologie 20: 861–865.

    Google Scholar 

  • Harper, D. M., E. H. J. Morrison, M. M. Macharia, K. M. Mavuti & C. Upton, 2011. Lake Naivasha, Kenya: ecology, society and future. Freshwater Reviews 4: 89–114.

    Google Scholar 

  • Hitzfeld, B. C., S. J. Hoger & D. R. Dietrich, 2000. Cyanobacteria toxins: removal during drinking water treatment and human risk assessment. Environmental Health Perspective 108: 113–122.

    CAS  Google Scholar 

  • Holland, A. & S. Kinnear, 2013. Interpreting the possible ecological role(s) of cyanotoxins: compounds for competitive advantage and/or physiological aide? Marine Drugs 11: 2239–2258.

    PubMed  PubMed Central  Google Scholar 

  • Holm-Hansen, O. & B. Riemann, 1978. Chlorophyll-a determination: improvements in methodology. Oikos 30: 438–447.

    CAS  Google Scholar 

  • Hubble, D. S. & D. M. Harper, 2002. Nutrient control of phytoplankton production in Lake Naivasha, Kenya. Hydrobiologia 488: 99–105.

    CAS  Google Scholar 

  • Huisman, J., G. A. Codd, H. W. Paerl, B. W. Ibelings, J. M. H. Verspagen & P. M. Visser, 2018. Cyanobacteria blooms. Nature Reviews 16: 471–483.

    CAS  PubMed  Google Scholar 

  • Huntington, T. G., 2006. Evidence for intensification of the global water cycle: review and synthesis. Journal of Hydrology 319: 83–95.

    Google Scholar 

  • IPCC. 2018. Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds)]. World Meteorological Organization, Geneva, Switzerland. 32 pp.

  • Jahnichen, S., T. Ihle & T. Petzoldt, 2008. Variability of microcystin cell quota: a small model explains dynamics and equilibria. Limnologica 38: 339–349.

    Google Scholar 

  • Jeffrey, S. E. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167: 191–194.

    CAS  Google Scholar 

  • Jenkin, P. M., 1932. Reports on the Percy Sladen Expedition to some Rift Valley Lakes in Kenya in 1929. I. Introductory account of the biological survey of five freshwater and alkaline lakes. Journal of Natural History 9: 533–553.

    Google Scholar 

  • Jimoh, E., C. Vogler & J. Waters, 2007. Perceived and real sources of pollution in Lake Navaisha. Tropical Biology Association, Nairobi, 15 pp.

  • Kalff, J. & Watson, 1986. Phytoplankton and its dynamics in two tropical lakes a tropical and temperate zone comparison. Hydrobiologia 138: 161–176.

    Google Scholar 

  • Kallquist, T., 1978. Limnological investigation of lakes in Kenya 1976-77. Technical Report 6. Kenya Ministry of Water Development, Nairobi, 71 pp.

  • Kallquist, T., 1979. Limnological investigations of Lake Naivasha. Technical Report Kenya Ministry of Water Development, Nairobi, 19 pp.

  • Kaplan, A., M. Harel, R. N. Kaplan-Levy, O. Hadas, A. Sukenik & E. Dittmann, 2012. The languages spoken in the water body (or the biological role of cyanobacteria toxins). Frontiers in Microbiology 3: 1–9.

    Google Scholar 

  • Kenya Flower Council [KFC], 2018. Floriculture in Kenya. Retrieved December 31, 2018 from: http://kenyaflowercouncil.org/?page_id=92

  • Kenya National Bureau of Statistics [KNBS], 2009. Population and Housing Census Highlights. Nairobi, Kenya.

    Google Scholar 

  • Kitaka, N., D. M. Harper & K. M. Mavuti, 2002. Phosphorus inputs to Lake Naivasha from its catchment and the trophic state of the lake. Hydrobiologia 488: 73–80.

    CAS  Google Scholar 

  • Krienitz, L., P. K. Dadheech, J. Fastner & K. Kotut, 2013. The rise of potentially toxin producing cyanobacteria in Lake Naivasha, Great African Rift Valley, Kenya. Harmful Algae 27: 42–51.

    CAS  Google Scholar 

  • Kuhn, A., W. Britz, D. K. Willy & P. van Oel, 2016. Simulating the viability of water institutions under volatile rainfall conditions – The case of the Lake Naivasha Basin. Environmental Modelling & Software 75: 373–387.

    Google Scholar 

  • Lawrenz, E., E. J. Fedewa & T. L. Richardson, 2011. Extraction protocols for the quantification of phycobilins in aqueous phytoplankton extracts. Journal of Applied Phycology 23: 865–871.

    Google Scholar 

  • Lê, S., J. Josse & F. Husson, 2008. FactoMineR: a R package for multivariate analysis. Journal of Statistical Software 25: 1–18.

    Google Scholar 

  • Long, B. M., G. J. Jones & P. T. Orr, 2001. Cellular microcystin content in N-Limited Microcystis aeruginosa can be predicted from growth rate. Applied and Environmental Microbiology 67: 278–283.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lukac, M. & R. Aegerter, 1993. Influence of trace-metals on growth and toxin production of Microcystis aeruginosa. Toxicon 31: 293–305.

    CAS  PubMed  Google Scholar 

  • Lyck, S., 2004. Simultaneous changes in cell quotas of microcystin, chlorophyll a, protein and carbohydrate during different growth phases of a batch culture experiment with Microcystis aeruginosa. Journal of Plankton Research 26: 727–736.

    CAS  Google Scholar 

  • Ma, J., Y. Li, H. Duan, R. Sivakumar & X. Li, 2018. Chronic exposure of nanomolar MC-LR caused oxidative stress and inflammatory responses in HepG2 cells. Chemosphere 192: 305–317.

    CAS  PubMed  Google Scholar 

  • Mavuti, K. M. & D. M. Harper, 2006. The ecological state of Lake Naivasha, Kenya, 2005: Turning 25 years research into an effective Ramsar monitoring programme. In Odada, E.O., D.O. Olago, W. Ochola, M. Ntiba, S. Wandiga, N. Gichuki, H. Oyieke (eds), Proceedings of the 11th World Lakes Conference, Vol. 2. International Lake Environment Committee Foundation, Kusatsu, Japan: 30–34.

  • McLellan, N. L. & R. A. Manderville, 2017. Toxic mechanisms of microcystins in mammals. Toxicology Research 6: 391–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medrano, E. A., R. E. Uittenbogaard, B. J. H. V. De Wiel, L. M. D. Pires & H. J. H. Clercx, 2016. An alternative explanation for cyanobacteria scum formation and persistence by oxygenic photosynthesis. Harmful Algae 60: 27–35.

    Google Scholar 

  • Melack, J. M., 1979a. Temporal variability of phytoplankton in tropical lakes. Oceologia 44: 1–7.

    Google Scholar 

  • Melack, J. M., 1979b. Photosynthetic rates in four tropical African fresh waters. Freshwater Biology 9: 555–571.

    CAS  Google Scholar 

  • Mironga, J. M., 2006. The effect of water hyacinth, Eichhornia Crassipes, infestation on phytoplankton productivity in Lake Naivasha and the status of control. In Odada, E. & D. O. Olago (eds), Proceedings of the 11th World Lakes Conference, Vol. 2. Nairobi Kenya: 573–579.

  • Molot, L., S. B. Watson, I. F. Creed, C. G. Trick, S. K. McCabe, M. J. Verschoor, R. J. Sorichetti, C. Powe, J. Venkiteswaran & S. L. Schiff, 2014. A novel model for cyanobacteria bloom formation: the critical role of anoxia and ferrous iron. Freshwater Biology 59: 1323–1340.

    CAS  Google Scholar 

  • Morrison, E. J. & D. M. Harper, 2009. Ecohydrological principles to underpin the restoration of Cyperus papyrus at Lake Naivasha, Kenya. Ecohydrology & Hydrobiology 9: 83–97.

    Google Scholar 

  • Ndlela, L. L., P. J. Oberholster, J. H. Van Wyk & P. H. Cheng, 2016. An overview of cyanobacteria bloom occurrences and research in Africa over the last decade. Harmful Algae 60: 11–26.

    CAS  PubMed  Google Scholar 

  • Ndungu, J., D. C. M. Augustijn, S. J. M. H. Hulscher, N. Kitaka & J. Mathooko, 2013. Spatio-temporal variations in the trophic status of Lake Naivasha, Kenya. Lakes and Reservoirs: Research and Management 18: 317–328.

    CAS  Google Scholar 

  • Njiru, J., G. Morara, E. Waithaka & J. Mugo, 2015. Fish kills in Lake Naivasha, Kenya: what was the probable cause? International Journal of Fisheries and Aquatic Studies 3: 179–184.

    Google Scholar 

  • Njuguna, S. G. 1983. Nutrient-productivity relationships in tropical Naivasha basin lakes, Kenya. Ph.D. Thesis, University of Nairobi. 330 p.

  • Nyachiro, D. N., B. G. Ongarora, J. K. Kibet & N. K. Rono, 2016. Characterization of cyanobacteria toxins in Lake Naivasha, Kenya. Asian Journal of Research in Chemistry 9: 217–220.

    Google Scholar 

  • Nyongesa, J. M., H. K. Bett, J. K. Lagat & O. I. Ayuya, 2016. Estimating farmers’ stated willingness to accept pay for ecosystem services: case of Lake Naivasha watershed payment for ecosystem services scheme-Kenya. Ecological Processes 5: 15.

    Google Scholar 

  • OECD, 1982. Eutrophication of Waters: Monitoring, Assessment and Control. Organization for Economic Cooperation and Development, Paris, France. 154 p.

  • Orihel, D. M., D. W. Schindler, N. C. Ballard, L. R. Wilson & R. D. Vinebrooke, 2016. Experimental iron amendment suppresses toxic cyanobacteria in a hypereutrophic lake. Ecological Applications 26: 1517–1534.

    PubMed  Google Scholar 

  • Orr, P. T. & G. J. Jones, 1998. Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnology and Oceanography 43: 1604–1614.

    CAS  Google Scholar 

  • Orr, P. T., A. Willis & M. A. Burford, 2018. Application of first order rate kinetics to explain changes in bloom toxicity – the importance of understanding cell toxin quotas. Journal of Oceanology and Limnology 36: 1063–1074.

    CAS  Google Scholar 

  • Otiang’a-Owiti, G. E. & I. A. Oswe., 2007. Human impact on lake ecosystems: the case of Lake Naivasha, Kenya. African Journal of Aquatic Science 32: 79–88.

    Google Scholar 

  • Pacini, N., P. Hesslerova, J. Pokorny, T. Mwinami, E. H. J. Morrison, A. A. Cook, S. Zhang & D. M. Harper, 2018. Papyrus as an ecohydrological tool for restoring ecosystem services in Afrotropical wetlands. Ecohydrology & Hydrobiology 18: 142–154.

    Google Scholar 

  • Paerl, H. W. & J. Huisman, 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1: 27–37.

    CAS  PubMed  Google Scholar 

  • Paerl, H. W. & T. G. Otten, 2013. Harmful cyanobacteria blooms: causes, consequences, and controls. Microbiology and Ecology 65: 995–1010.

    CAS  Google Scholar 

  • Paerl, H. W., N. S. Hall & E. S. Calandrino, 2011. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment 409: 1739–1745.

    CAS  PubMed  Google Scholar 

  • Paerl, H. W., T. Scott, M. J. McCarthy, S. E. Newell, W. S. Gardner, K. E. Havens, D. K. Hoffman, S. W. Wilhelm & W. A. Wurtsbaugh, 2016. It takes two to tango: when and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems. Environmental Science & Technology 50: 10805–10813.

    CAS  Google Scholar 

  • Park, H., C. Iwami, M. F. Watanabe, K. Harada, T. Okino & H. Hayashi, 1998. Temporal variabilities of the concentrations of intra and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991–1994). Environmental Toxicology and Water Quality 13: 61–72.

    CAS  Google Scholar 

  • Phlips, E. J., K. E. Havens & M. Lopes, 2008. Seasonal dynamics of phytoplankton in two Amazon flood plain lakes of varying hydrologic connectivity to the main river channel. Fundamental and Applied Limnology 172: 99–109.

    CAS  Google Scholar 

  • Rich, F., 1932. Reports on the Percy Sladen expedition to some Rift Valley lakes in Kenya in 1929. –IV. Phytoplankton from the Rift Valley lakes in Kenya. Journal of Natural History 10: 233–262.

    Google Scholar 

  • Sevilla, E., B. Martin-Luna, L. Vela, M. T. Bes, M. F. Fillat & M. L. Peleato, 2008. Iron availability affects mcyD expression and microcystin- LR synthesis in Microcystis aeruginosa PCC7806. Environmental Microbiology 10: 2476–2483.

    CAS  PubMed  Google Scholar 

  • Shayler, H. A. & P. A. Siver, 2006. Key to freshwater algae: a web-based tool to enhance understanding of microscopic biodiversity. Journal of Science Education and Technology 15: 298–303.

    Google Scholar 

  • Sivonen, K. & G. Jones, 1999. Chapter 3. Cyanobacteria toxins. In Chorus, I. & J. Bartram (eds), Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. World Health Organization, St. Edmundsbury Press, London: 41–111.

    Google Scholar 

  • Spoof, L. & A. Catherine, 2017. Appendix 3: Tables of microcystins and nodularins. In Meriluoto, J., L. Spoof & G. A. Codd (eds), Handbook of Cyanobacteria Monitoring and Cyanotoxin Analysis. Wiley, Chichester: 526–537.

    Google Scholar 

  • Svircev, Z., D. Drobac, N. Tokodi, B. Mijovic, G. A. Codd & J. Meriluoto, 2017. Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Archives of Toxicology 91: 621–650.

    CAS  PubMed  Google Scholar 

  • Tarras-Wahlberg, H., M. Everard & D. M. Harper, 2002. Geochemical and physical characteristics of river and lake sediments in Lake Naivasha. Hydrobiologia 488: 27–41.

    CAS  Google Scholar 

  • Terer, T., A. M. Muasya, S. Higgins, J. J. Gaudet & L. Triest, 2014. Importance of seedling recruitment for regeneration and maintaining genetic diversity of Cyperus papyrus during drawdown in Lake Naivasha, Kenya. Aquatic Botany 116: 93–102.

    Google Scholar 

  • Turnbull, L., J. Wainwright & R. E. Brazier, 2008. A conceptual framework for understanding semi – arid land degradation: ecohydrological interactions across multiple-space and time scales. Ecohydrology 1: 23–34.

    Google Scholar 

  • Uku, J. N. & K. M. Mavuti, 1994. Comparative limnology, species diversity and biomass relationship of zooplankton and phytoplankton in five freshwater lakes in Kenya. Hydrobiologia 272: 251–258.

    Google Scholar 

  • Utkilen, H. & N. Gjolme, 1995. Iron-stimulated toxin production in Microcystis aeruginosa. Applied Environmental Microbiology 61: 797–800.

    CAS  PubMed  Google Scholar 

  • Verschuren, D., 1996. Comparative paleolimnology in a system of four shallow tropical lake basins. In Johnson, T. C. & E. Odada (eds), The Limnology, Climatology and Paleoclimatology of the East African Lakes. Gordon and Breach, Newark: 559–572.

    Google Scholar 

  • WHO, 2017. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum. World Health Organization, Geneva. Licence: CC BY-NC-SA 3.0 IGO.

  • Wiedner, C., P. M. Visser, J. Fastner, J. S. Metcalf, G. A. Codd & L. R. Mur, 2003. Effects of light on the microcystin content of Microcystis strain PCC 7806. Applied Environment and Microbiology 69: 1475–1481.

    CAS  Google Scholar 

  • Worthington, E. B., 1932. Scientific results of the Cambridge Expedition to the East African Lakes 1930-1-1. General introduction and station list. Zoological Journal of the Linnaean Society 38: 99–119.

    Google Scholar 

  • Xie, L., J. Hagar, R. R. Rediske, J. O’Keefe, J. Dyble, Y. Hong & A. D. Steinman, 2011. The influence of environmental conditions and hydrologic connectivity on cyanobacteria assemblages in two drowned river mouth lakes. Journal of Great Lakes Research 37: 470–479.

    CAS  Google Scholar 

  • Zastepa, A., F. Pick & J. Blais, 2014. Fate and persistence of particulate and dissolved microcystin-LA from Microcystis blooms. Human and Ecological Risk Assessment 20: 1670–1686.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the International Development Research Council (IDRC) of Canada and a NSERC Discovery Grant to CGT. Support in the field was provided by the Department of Fisheries in Naivasha, Kenya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. F. Creed.

Additional information

Handling editor: David Philip Hamilton

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raffoul, M.H., Enanga, E.M., E Senar, O. et al. Assessing the potential health risk of cyanobacteria and cyanotoxins in Lake Naivasha, Kenya. Hydrobiologia 847, 1041–1056 (2020). https://doi.org/10.1007/s10750-019-04167-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04167-z

Keywords

Navigation