Skip to main content

Advertisement

Log in

Phytoplankton diversity recovers slowly and cyanobacterial abundance remains high after the reflooding of drained marshes

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Wetland restoration with the goal of restoring natural ecosystem functioning is receiving attention worldwide. Mesopotamian marshes, which had been suffering from a water shortage since the 1970s, were reflooded in 2003, and have been assessed to be at least partly recovered from certain physical, chemical, or biological point of views. Our focus was in the phytoplankton community and through that in the aquatic food web in order to understand the recovery of the normal functioning of the marsh ecosystem. We sampled eight separate marshes that formed a continuum from a wet to a desertified area during the desiccation period. Three to five years after the reflooding, we measured the biomass, diversity and structure of the phytoplankton community and its controlling physical and chemical factors 11 times irregularly. In most cases, the dried and reflooded marshes had a less diverse phytoplankton community than the marsh that had never dried up. The community structure of the latter differed from all dried marshes and was the most divergent from the marshes that had been succumbed to desertification and were situated farthest away from the freshwater rivers. We conclude that the aquatic food web and thus the natural wetland ecosystem functioning recover more slowly than single physical or chemical factors. Cyanobacteria species abundance may be of concern from a management point of view for a long period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Hilli, M. R. A., B. G. Warner, T. Asada & A. Douabul, 2009. An assessment of vegetation and environmental controls in the 1970s of the Mesopotamian wetlands of southern Iraq. Wetlands Ecology and Management 17: 207.

    Google Scholar 

  • Al-Saboonchi, A., A.-R. M. Mohamed, A. H. M. J. Alobaidy, H. S. Abid & B. K. Maulood, 2011. On the current and restoration conditions of the southern Iraqi marshes: application of the CCME WQI on East Hammar marsh. Journal of Environmental Protection 2: 316.

    CAS  Google Scholar 

  • AlMaarofi, S. S., A. A. Z. Douabul, B. G. Warner & W. D. Taylor, 2014. Phosphorus and nitrogen budgets of the Al-Hawizeh marshland after re-flooding. Hydrobiologia 721: 155–164.

    CAS  Google Scholar 

  • Avigliano, L., A. Vinocour, G. Chaparro, G. Tell & L. Allende, 2014. Influence of re-flooding on phytoplankton assemblages in a temperate wetland following prolonged drought. Journal of Limnology 73: 247–262.

    Google Scholar 

  • Bortolotti, L. E., R. D. Vinebrooke & V. L. St Louis, 2016. Prairie wetland communities recover at different rates following hydrological restoration. Freshwater Biology 61: 1874–1890.

    CAS  Google Scholar 

  • Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani, G. M. Mace, D. Tilman & D. A. Wardle, 2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67.

    CAS  PubMed  Google Scholar 

  • Carrasco, N. K. & R. Perissinotto, 2015. Zooplankton community structure during a transition from dry to wet state in a shallow, subtropical estuarine lake. Continental Shelf Research 111: 294–303.

    Google Scholar 

  • Chaparro, G., Z. Horváth, I. O’Farrell, R. Ptacnik & T. Hein, 2018. Plankton metacommunities in floodplain wetlands under contrasting hydrological conditions. Freshwater Biology 63: 380–391.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaparro, G., I. O’Farrell & T. Hein, 2019. Multi-scale analysis of functional plankton diversity in floodplain wetlands: effects of river regulation. Science of The Total Environment 667: 338–347.

    CAS  Google Scholar 

  • Costa, N. B., M. A. Kolman & A. Giani, 2016. Cyanobacteria diversity in alkaline saline lakes in the Brazilian Pantanal wetland: a polyphasic approach. Journal of Plankton Research 38: 1389–1403.

    CAS  Google Scholar 

  • Desikachary, T. V., 1959. Cyanophyta. Indian Council of Agricultural Research, New Delhi.

    Google Scholar 

  • Díaz-García, J. M., E. Pineda, F. López-Barrera & C. E. Moreno, 2017. Amphibian species and functional diversity as indicators of restoration success in tropical montane forest. Biodiversity and Conservation 26: 2569–2589.

    Google Scholar 

  • Dodson, S. I. & R. A. Lillie, 2001. Zooplankton communities of restored depressional wetlands in Wisconsin, USA. Wetlands 21: 292–300.

    Google Scholar 

  • Douabul, A. A. Z., N. A. Al-Mudhafer, A. A. Alhello, H. T. Al-Saad & S. S. Al-Maarofi, 2012. Restoration versus Re-flooding: mesopotamia Marshlands. Hydrology Current Research 3: 140.

    Google Scholar 

  • Engst, K., A. Baasch, A. Erfmeier, U. Jandt, K. May, R. Schmiede & H. Bruelheide, 2016. Functional community ecology meets restoration ecology: assessing the restoration success of alluvial floodplain meadows with functional traits. Journal of Applied Ecology 53: 751–764.

    Google Scholar 

  • Federation, W. E. & A. P. H. Association, 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association (APHA), Washington, DC.

    Google Scholar 

  • Gobler, C. J., J. M. Burkholder, T. W. Davis, M. J. Harke, T. Johengen, C. A. Stow & D. B. de Waal, 2016. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54: 87–97.

    CAS  PubMed  Google Scholar 

  • Granado, D. C. & R. Henry, 2014. Phytoplankton community response to hydrological variations in oxbow lakes with different levels of connection to a tropical river. Hydrobiologia 721: 223–238.

    CAS  Google Scholar 

  • Guiry, M. D. & G. M. Guiry, 2015. AlgaeBase. 2015. World-wide Electronic Publication, National University of Ireland, Galway.

    Google Scholar 

  • Hamdan, M. A., T. Asada, F. M. Hassan, B. G. Warner, A. Douabul, M. R. A. Al-Hilli & A. A. Alwan, 2010. Vegetation response to re-flooding in the Mesopotamian Wetlands, Southern Iraq. Wetlands 30: 177–188.

    Google Scholar 

  • Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau & S. Naeem, 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.

    Google Scholar 

  • Hooper, D. U., E. C. Adair, B. J. Cardinale, J. E. K. Byrnes, B. A. Hungate, K. L. Matulich, A. Gonzalez, J. E. Duffy, L. Gamfeldt & M. I. O’Connor, 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486: 105–108.

    CAS  PubMed  Google Scholar 

  • Hustedt, F., 1985. The Pennate Diatoms. Koeltz Scientific Books, Oberreifenberg.

    Google Scholar 

  • Kon, K., Y. Hoshino, K. Kanou, D. Okazaki, S. Nakayama & H. Kohno, 2012. Importance of allochthonous material in benthic macrofaunal community functioning in estuarine salt marshes. Estuarine Coastal and Shelf Science 96: 236–244.

    CAS  Google Scholar 

  • Laegdsgaard, P., 2006. Ecology, disturbance and restoration of coastal saltmarsh in Australia: a review. Wetlands Ecology and Management 14: 379–399.

    Google Scholar 

  • Lawrenz, E., E. M. Smith & T. L. Richardson, 2013. Spectral irradiance, phytoplankton community composition and primary productivity in a salt marsh estuary, North Inlet, South Carolina, USA. Estuaries and Coasts 36: 347–364.

    CAS  Google Scholar 

  • Lengyel, E., J. Padisák, É. Hajnal, B. Szabó, A. Pellinger & C. Stenger-Kovács, 2016. Application of benthic diatoms to assess efficiency of conservation management: a case study on the example of three reconstructed soda pans, Hungary. Hydrobiologia 777: 95–110.

    CAS  Google Scholar 

  • Mayer, P. M., R. O. Megard & S. M. Galatowitsch, 2004. Plankton respiration and biomass as functional indicators of recovery in restored prairie wetlands. Ecological Indicators 4: 245–253.

    Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2012. Phytoplankton dynamics in permanent and temporary Mediterranean waters: is the game hard to play because of hydrological disturbance? Hydrobiologia 698: 147–159.

    CAS  Google Scholar 

  • Nõges, T., R. Laugaste, P. Nõges & I. Tõnno, 2008. Critical N: P ratio for cyanobacteria and N2-fixing species in the large shallow temperate lakes Peipsi and Vortsjärv, North-East Europe. Hydrobiologia 599: 77–86.

    Google Scholar 

  • Nwaishi, F., R. M. Petrone, J. S. Price & R. Andersen, 2015. Towards developing a functional-based approach for constructed peatlands evaluation in the Alberta Oil Sands Region, Canada. Wetlands 35: 211–225.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. B. O’hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, & H. Wagner, 2010. Vegan: community ecology package. R package version 1.17-4. [available on internet at http://cran.r-project.org]. Acesso em 23: 2010.

  • Olmo, C., X. Armengol, M. Antón-Pardo & R. Ortells, 2016. The environmental and zooplankton community changes in restored ponds over 4 years. Journal of Plankton Research 38: 490–501.

    Google Scholar 

  • Paerl, H. W., 2017. Controlling harmful cyanobacterial blooms in a climatically more extreme world: management options and research needs. Journal of Plankton Research 39: 763–771.

    Google Scholar 

  • Patrick, R. & C. W. Reimer, 1975. The Diatoms of the United States, Exclusive of Alaska and Hawaii: Entomoneidaceae, Cymbellaceae, Gomphonemaceae, Epithemiaceae, Vol. 2. Monographs of the Academy of Natural Sciences of Philadelphia, Philadelphia.

    Google Scholar 

  • Prescott, G. W., 1978. How to Know Freshwater Algae, 3rd ed. Wes. C. Brown Company Publishers, Dubugue.

    Google Scholar 

  • Ptacnik, R., T. Andersen & T. Tamminen, 2010. Performance of the Redfield ratio and a family of nutrient limitation indicators as thresholds for phytoplankton N vs P limitations. Ecosystems 13: 1201–1214.

    CAS  Google Scholar 

  • Richardson, C. J. & N. A. Hussain, 2006. Restoring the Garden of Eden: an ecological assessment of the marshes of Iraq. AIBS Bulletin 56: 477–489.

    Google Scholar 

  • Richardson, C. J., P. Reiss, N. A. Hussain, A. J. Alwash & D. J. Pool, 2005. The restoration potential of the Mesopotamian marshes of Iraq. Science 307: 1307–1311.

    CAS  PubMed  Google Scholar 

  • Rojo, C., M. Alvarez-Cobelas, J. Benavent-Corai, M. M. Barón-Rodríguez & M. A. Rodrigo, 2012. Trade-offs in plankton species richness arising from drought: insights from long-term data of a National Park wetland (central Spain). Biodiversity and Conservation 21: 2453–2476.

    Google Scholar 

  • Salman, S. D., M. F. Abbas, A.-H. M. Ghazi, H. K. Ahmed, A. N. Akash, A. A. Z. Douabul, B. G. Warner & T. Asada, 2014. Seasonal changes in zooplankton communities in the re-flooded Mesopotamian wetlands, Iraq. Journal of Freshwater Ecology 29: 397–412.

    CAS  Google Scholar 

  • Selala, C., A.-M. Botha, L. P. De Klerk, A. R. De Klerk, J. G. Myburgh & P. J. Oberholster, 2014. Using phytoplankton diversity to determine wetland resilience, one year after a vegetable oil spill. Water Air Soil Pollution 225: 2051.

    Google Scholar 

  • Semcheski, M. R., T. A. Egerton & H. G. Marshall, 2016. Composition and diversity of intertidal microphytobenthos and phytoplankton in chesapeake bay. Wetlands 36: 483–496.

    Google Scholar 

  • Stainton, M., M. J. Capel & F. A. J. Armstrong, 1977. Chemical Analysis of Fresh Water. Freshwater Institute, Shepherdstown.

    Google Scholar 

  • Stapanian, M. A., J. V. Adams & B. Gara, 2013. Presence of indicator plant species as a predictor of wetland vegetation integrity: a statistical approach. Plant Ecology 214: 291–302.

    Google Scholar 

  • Stević, F., M. Mihaljević & D. Špoljarić, 2013. Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations. Hydrobiologia 709: 143–158.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1968. Determination of dissolved oxygen. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Bulletin 167: 71–75.

    Google Scholar 

  • Tahir, M. A., A. K. Risen & N. A. Hussain, 2008. Monthly variations in the physical and chemical properties of the restored southern Iraqi marshes. Marsh Bulletin 3: 81–94.

    Google Scholar 

  • Team, R. C., 2007. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. Austria, Vienna.

    Google Scholar 

  • Travaini-Lima, F., A. Milstein & L. H. Sipaúba-Tavares, 2016. Seasonal differences in plankton community and removal efficiency of nutrients and organic matter in a subtropical constructed wetland. Wetlands 36: 921–933.

    Google Scholar 

  • Uzarski, D. G., V. J. Brady, M. J. Cooper, D. A. Wilcox, D. A. Albert, R. P. Axler, P. Bostwick, T. N. Brown, J. J. H. Ciborowski & N. P. Danz, 2017. Standardized measures of coastal wetland condition: implementation at a Laurentian Great Lakes basin-wide scale. Wetlands 37: 15–32.

    Google Scholar 

  • Van den Brink, P. J. & C. J. F. Ter Braak, 1999. Principal response curves: analysis of time-dependent multivariate responses of biological community to stress. Environmental Toxicology and Chemistry 18: 138–148.

    Google Scholar 

  • Waltham, N. J., D. Burrows, C. Wegscheidl, C. Buelow, M. Ronan, N. Connolly, P. Groves, D. Audas, C. Creighton & M. Sheaves, 2019. Lost floodplain wetland environments and efforts to restore connectivity, habitat and water quality settings on the Great Barrier Reef. Frontiers Marine Science Frontiers 6: 71.

    Google Scholar 

  • Weisser, W. W., C. Roscher, S. T. Meyer, A. Ebeling, G. Luo, E. Allan, H. Beßler, R. L. Barnard, N. Buchmann & F. Buscot, 2017. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic and Applied Ecology 23: 1–73.

    Google Scholar 

  • Wolters, M., A. Garbutt & J. P. Bakker, 2005. Salt-marsh restoration: evaluating the success of de-embankments in north-west Europe. Biological Conservation 123: 249–268.

    Google Scholar 

  • Wortley, L., J.-M. Hero & M. Howes, 2013. Evaluating ecological restoration success: a review of the literature. Restoration Ecology 21: 537–543.

    Google Scholar 

  • Wu, G., H. Li, B. Liang, F. Shi, J. T. Kirby & R. Mieras, 2017. Subgrid modeling of salt marsh hydrodynamics with effects of vegetation and vegetation zonation. Earth Surface Processes and Landforms 42: 1755–1768.

    Google Scholar 

  • Xu, S., Y. Wang, C. Guo, Z. Zhang, Y. Shang, Q. Chen & Z.-L. Wang, 2017. Comparison of Microbial community composition and diversity in native coastal wetlands and wetlands that have undergone long-term agricultural reclamation. Wetlands 37: 99–108.

    CAS  Google Scholar 

  • Zhao, Q., J. Bai, L. Huang, B. Gu, Q. Lu & Z. Gao, 2016. A review of methodologies and success indicators for coastal wetland restoration. Ecological Indicators 60: 442–452.

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group NO (RGP-1438-029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuad Ameen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling editor: Judit Padisák

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameen, F., AlMaarofi, S., Talib, A. et al. Phytoplankton diversity recovers slowly and cyanobacterial abundance remains high after the reflooding of drained marshes. Hydrobiologia 843, 79–92 (2019). https://doi.org/10.1007/s10750-019-04039-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04039-6

Keywords

Navigation