Skip to main content

Advertisement

Log in

Food habits of invertebrate grazers in a forested stream: variations according to taxonomic affiliation, flow habitat, and body size

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Macroinvertebrate grazers mainly feed on periphyton comprising of algae and detritus in streams, and sometimes feed on plant detritus or other invertebrates. We determined food habits of 21 grazer species (19 mayflies, 1 caddisfly, and 1 net-winged midge) from their gut contents, and systematically examined whether taxonomic affiliation, flow habitat, or body size are responsible for variations in food habits among or within the grazer species on a forested stream. We obtained some evidence that the food habits of grazer species varied according to family or genus; for example, species of Ephemerellidae ingested more animal materials. Species inhabiting slow-flow areas in riffles ingested fewer diatoms, while those inhabiting rapid-flow areas in riffles ingested less plant detritus. Larger individuals ingested more plant detritus or animal materials within a particular species (five grazer species), whereas we did not find the opposite patterns. Understanding the trophic roles of stream macroinvertebrates and the energy flow in stream food webs requires systematic exploration of the factors responsible for inter- and intraspecific variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe, T. & M. Nunokawa, 2005. Food web analysis using stable isotopes in a forested stream in spring. Journal of Japanese Forest Society 87: 13–19.

    Article  Google Scholar 

  • Arnon, S., A. I. Packman, C. G. Peterson & K. A. Gray, 2007. Effects of overlying velocity on periphyton structure and denitrification. Journal of Geophysical Research. https://doi.org/10.1029/2006jg000235.

    Article  Google Scholar 

  • Biggs, B. J. F., D. G. Goring & V. I. Nikora, 1998. Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. Journal of Phycology 34: 598–607.

    Article  Google Scholar 

  • Brooks, A. J., T. Haeusler, I. Reinfelds & S. Williams, 2005. Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles. Freshwater Biology 50: 331–344.

    Article  Google Scholar 

  • Buffagni, A. & E. Comin, 2000. Secondary production of benthic communities at the feeding habitat scale as a tool to assess ecological integrity in mountain streams. Hydrobiologia 422–433: 183–195.

    Article  Google Scholar 

  • Carlough, L. A., 1994. Origins, structure, and trophic significance of amorphous seston in a black river. Freshwater Biology 31: 227–237.

    Article  Google Scholar 

  • Chapman, D. W. & R. L. Demory, 1963. Seasonal changes in the food ingested by aquatic insect larvae and nymphs in two Oregon streams. Ecology 44: 140–146.

    Article  Google Scholar 

  • Cummins, K. W., 1973. Trophic relations of aquatic insects. Annual Review of Entomology 18: 183–206.

    Article  Google Scholar 

  • Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.

    Article  Google Scholar 

  • Ditsche-Kuru, P. & J. H. E. Koop, 2009. New insights into a life in current: do the gill lamellae of Epeorus assimilis and Iron alpicola larvae (Ephemeroptera: Heptageniidae) function as a sucker or as friction pads? Aquatic Insects 31(S1): 495–506.

    Article  Google Scholar 

  • Dodds, W. K. & B. J. F. Biggs, 2002. Water velocity attenuation by stream periphyton and macrophytes in relation to growth form and architecture. Journal of the North American Benthological Society 21: 2–15.

    Article  Google Scholar 

  • Geesey, G. G., R. Mutch, J. W. Costerton & R. B. Green, 1978. Sessile bacteria: an important component of the microbial population in small mountain streams. Limnology and Oceanography 23: 1214–1223.

    Article  CAS  Google Scholar 

  • Hall, R. O. & J. L. Meyer, 1998. The trophic significance of bacteria in detritus-based stream food web. Ecology 79: 1995–2012.

    Article  Google Scholar 

  • Hall, R. O., J. B. Wallace & S. L. Eggert, 2000. Organic matter flow in stream food webs with reduced detrital resource base. Ecology 81: 3445–3463.

    Article  Google Scholar 

  • Hall, R. O., G. E. Likens & H. M. Malcom, 2001. Trophic basis of invertebrate production in 2 streams at the Hubbard Brook Experimental Forest. Journal of the North American Benthological Society 20: 432–447.

    Article  Google Scholar 

  • Hawkins, C. P., 1985. Food habits of species of ephemerellid mayflies (Ephemeroptera: Insecta) in streams of Oregon. American Midland Naturalist 113: 343–352.

    Article  Google Scholar 

  • Hill, W. R., P. J. Mulholland & E. R. Marzolf, 2001. Stream ecosystem responses to forest leaf emergence in spring. Ecology 82: 2306–2319.

    Article  Google Scholar 

  • Huryn, A. D. & J. B. Wallace, 1987. Local geomorphology as a determinant of macrofaunal production in a mountain stream. Ecology 68: 1932–1942.

    Article  PubMed  Google Scholar 

  • Ishikawa, I. F., M. Uchida, Y. Shibata & I. Tayasu, 2014. Carbon storage reservoirs in watersheds support stream food webs via periphyton production. Ecology 95: 1264–1271.

    Article  PubMed  Google Scholar 

  • Ishiwata, S., 1989. Ephemerellidae. In Shibatani, A. & K. Tanida (eds), Recent progress of aquatic entomology in Japan, with special references to speciation and sumiwake. Tokai University Press, Kanagawa: 42–52.

    Google Scholar 

  • Ishiwata, S., 2001. A check list of Japanese Ephemeroptera. In Bae, Y. J. (ed.), 21st century and aquatic entomology in East Asia. The Korean Society of Aquatic Entomology, Seoul: 55–84.

    Google Scholar 

  • Junker, J. R. & W. F. Cross, 2014. Seasonality in the trophic basis of a temperate stream invertebrate assemblage: importance of temperature and food quality. Limnology and Oceanography 59: 507–518.

    Article  Google Scholar 

  • Kani, T., 1944. Ecology of torrent-infeeding habiting insects. In Furukawa, H. (ed.), Insects, Vol. 1. Kenkyu-sha, Tokyo: 171–317.

    Google Scholar 

  • Kawai, T. & K. Tanida, 2005. Aquatic insects of Japan: manual with keys and illustrations. Tokai University Press, Kanagawa.

    Google Scholar 

  • Kiffney, P. M., J. S. Richardson & J. P. Bull, 2003. Responses of priphyton and insects to experimental manipulation of riparian buffer width along forest streams. Journal of Applied Ecology 40: 1060–1076.

    Article  Google Scholar 

  • Kluge, N. J., 1988. Revision of genera of the family Heptageniidae (Ephemeroptera). 1. Diagnoses of tribes, genera and subgenera of the subfamily Heptageniinae. Entomologicheskoe Obozrenie 67: 291–313.

    Google Scholar 

  • Kobayashi, S., T. Gomi, R. C. Sidle & Y. Takemon, 2010a. Disturbances structuring macroinvertebrate communities in steep headwater streams: relative importance of forest clearcutting and debris flow occurrence. Canadian Journal of Fisheries and Aquatic Sciences 67: 427–444.

    Article  Google Scholar 

  • Kobayashi, S., S. Nakanishi, Y. Oshima & K. Amano, 2010b. Physical characteristics and macroinvertebrate biomass of riffles in the Toyo River, Aichi Prefecture. Japanese Journal of Limnology 71: 147–164.

    Article  Google Scholar 

  • Kobayashi, S., F. Akamatsu, K. Amano, S. Nakanishi & Y. Oshima, 2011. Longitudinal changes in δ13C of riffle macroinvertebrates from mountain to lowland sections of a gravel-bed river. Freshwater Biology 56: 1434–1446.

    Article  CAS  Google Scholar 

  • Lamberti, G. A. & J. W. Moore, 1984. Aquatic insects as primary consumers. In Resh, V. H. & D. M. Rosenberg (eds), The ecology of aquatic insects. Praeger, New York: 164–195.

    Google Scholar 

  • Lauridsen, R. B., F. K. Edwards, W. F. Cross, G. Woodward, A. G. Hildrew & J. I. Jones, 2014. Consequences of inferring diet from feeding guilds when estimating and interpreting consumer-resource stoichiometry. Freshwater Biology 59: 1497–1508.

    Article  Google Scholar 

  • McNeely, C., S. M. Clinton & J. M. Erbe, 2006. Landscape variation in C sources of scraping primary consumers in streams. Journal of the North American Benthological Society 25: 787–799.

    Article  Google Scholar 

  • McNeely, C., J. C. Finlay & M. E. Power, 2007. Grazer traits, competition, and carbon sources to a headwater-stream food web. Ecology 88: 391–401.

    Article  Google Scholar 

  • Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An introduction to the aquatic insects of North America, 4th ed. Kendall/Hunt Publishing Company, Iowa.

    Google Scholar 

  • Mihuc, T. B., 1997. The functional trophic role of lotic primary consumers: generalist versus specialist strategies. Freshwater Biology 37: 455–462.

    Article  Google Scholar 

  • Mihuc, T. B. & G. W. Minshall, 1995. Trophic generalists vs. trophic specialists: implications for food web dynamics in post-fire streams. Ecology 76: 2361–2372.

    Article  Google Scholar 

  • Mulholland, P. J. & W. R. Hill, 1997. Seasonal patterns in streamwater nutrient and dissolved organic carbon concentrations: separating catchment flow path and in-stream effects. Water Resources Research 33: 1297–1306.

    Article  CAS  Google Scholar 

  • Nakano, D. & M. Tsuno, 2016. Macroinvertebrate assemblages in an artificial habitat – a settling basin of a hydroelectric power plant: comparison with a natural riffle habitat. Limnology 17: 201–206.

    Article  Google Scholar 

  • Ogitani, M. & H. Nakamura, 2008. Distribution and seasonal population change of Heptageniidae nymph in the Oguro River (The Branch of Tenryu River). The Annals of Environmental Science Shinshu University 30: 57–66.

    Google Scholar 

  • Rader, R. B. & A. V. Ward, 1987. Resource utilization, overlap and temporal dynamics in a guild of mountain stream insects. Freshwater Biology 18: 521–528.

    Article  Google Scholar 

  • Rosemond, A. D., 1994. Multiple factors limit seasonal variation in periphyton in a forest stream. Journal of the North American Benthological Society 13: 333–344.

    Article  Google Scholar 

  • Rosi-Marshall, E. J., K. L. Vallis, C. V. Baxter & J. M. Davis, 2016. Retesting a prediction of the River Continuum Concept: autochthonous versus allochthonous resources in the diets of invertebrates. Freshwater Science 35: 534–543.

    Article  Google Scholar 

  • Sinmyo, F., 1996. Food webs of stream insect communities, their diversity and dynamics. Aquabiology 107: 434–440.

    Google Scholar 

  • Statzner, B., J. A. Gore & V. H. Resh, 1988. Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American Benthological Society 7: 307–360.

    Article  Google Scholar 

  • Takemon, Y., 2005. Life-type concept and functional feeding groups of benthos communities as indicators of lotic ecosystem conditions. Japanese Journal of Ecology 55: 189–197.

    Google Scholar 

  • Tall, L., A. Cattaneo, L. Cloutier, S. Dray & P. Legendre, 2006. Resource partitioning in a grazer guild feeding on a multilayer diatom mat. Journal of the North American Benthological Society 25: 800–810.

    Article  Google Scholar 

  • Tamura, S. & T. Kagaya, 2016. Life cycles and growth and development pattern of riffle-dwelling mayfly species in a Japanese stream. Limnology 17: 291–300.

    Article  Google Scholar 

  • R Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Troch, M. D., V. Chepumov, H. Gheerardyn, A. Vanreusel & E. Ólafsson, 2006. Is diatom size selection by harpacticoid copepods related to garazer body size? Journal of Experimental Marine Biology and Ecology 332: 1–11.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Villanueva, V. D., R. Albarino & B. Modenutti, 2004. Garazing impact of two aquatic invertebrates on periphyton from an Andean-Patagonian stream. Archiv für Hydrobiologie 159: 455–471.

    Article  Google Scholar 

  • Wallace, J. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41: 115–139.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for helpful comments to this manuscript. A part of this work was supported by Grant-in-Aid for JSPS Fellows (14J10780).

Author information

Authors and Affiliations

Authors

Contributions

ST contributed to the overall study design, field work, laboratory analyses, and data analyses, and worked extensively on the manuscript. TK contributed to the overall study design and data analyses, and helped write and edit the manuscript.

Corresponding author

Correspondence to Shigeaki Tamura.

Additional information

Handling editor: María del Mar Sánchez-Montoya

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamura, S., Kagaya, T. Food habits of invertebrate grazers in a forested stream: variations according to taxonomic affiliation, flow habitat, and body size. Hydrobiologia 841, 109–120 (2019). https://doi.org/10.1007/s10750-019-04010-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04010-5

Keywords

Navigation