Skip to main content

Advertisement

Log in

Nearshore environmental conditions influence larval growth and shape changes for a temperate rocky reef fish

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Coastal upwelling and other oceanographic processes, exert influences on phenotypic traits of early life stages of marine fishes. However, it remains to elucidate the environmental effects on the morphology of fish larvae. Using geometric morphometrics and otolith microstructure of a temperate rocky reef fish, the labrisomid blenny Auchenionchus crinitus (Labrisomidae), we studied the larval growth, mortality and morphospace of four consecutive cohorts, hatched between austral winter and summer off central Chile. We hypothesize that coastal environmental conditions will influence early life traits of this cryptobenthic fish. The winter cohort, which inhabited colder and well-mixed nearshore waters, grew more slowly and had a more hydrodynamic head shape, while the summer cohort, which lived in warmer and stratified waters, grew faster, but had a more robust shape. Cohorts expressed less ontogenetic allometry as seasons progressed, suggesting that the seasonal increment in water temperature reduces the shape changes with size during larval development. Also, slower- and faster-growing larvae showed large variation from the consensus shape, e.g. had the largest shape disparity. Nonetheless, all cohorts showed similar mortality rates during the first month of life. Finally, increases in zonal wind stress (i.e. sea breeze) and decreases in the sea temperatures (i.e. upwelling events) increased the growth rates of older (> 15 days old) larvae. Therefore, for this cryptobenthic species, differences in growth rate and body shape are related to the seasonal increase in water temperature, and local-scale meteorological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Díaz-Astudillo et al. (2017)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bakun, A, 1973. Coastal Upwelling Indices, West Coast of North America, 1946–71. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service.

  • Bakun, A. & C. S. Nelson, 1991. The seasonal cycle of wind stress curl in subtropical Eastern Boundary Current regions. Journal of Physical Oceanography 21: 1815–1834.

    Article  Google Scholar 

  • Baliga, V. B. & R. S. Mehta, 2016. Ontogenetic allometry in shape and flexibility underlies life history patterns of labrid cleaning behavior. Integrative and Comparative Biology 56: 416–427.

    Article  PubMed  Google Scholar 

  • Bernal-Durán, V. & M. F. Landaeta, 2017. Feeding variations and shape changes of a temperate reef clingfish during its early ontogeny. Scientia Marina 81: 205–215.

    Article  Google Scholar 

  • Blanco, J. L., A. C. Thomas, M. E. Carr & P. T. Strub, 2001. Seasonal climatology of hydrographic conditions in the upwelling region off northern Chile. Journal of Geophysical Research: Oceans 106: 11451–11467.

    Article  Google Scholar 

  • Blaxter, J. H. S., 1991. The effect of temperature on larval fishes. Netherland Journal of Zoology 42: 336–357.

    Article  Google Scholar 

  • Bonicelli, J., C. Moffat, S. A. Navarrete, J. L. Largier & F. J. Tapia, 2014. Spatial differences in thermal structure and variability within a small bay: interplay of diurnal winds and tides. Continental Shelf Research 88: 72–80.

    Article  Google Scholar 

  • Bookstein, F. L. 1991. Morphometric tools for landmark data geometric and biology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Carvalho, M. G., C. Moreira, H. Queiroga, P. T. Santos & A. T. Correia, 2015. Ontogenetic development of the sagittal otoliths of Lipophrys pholis (Blenniidae) during the embryonic, larval and settlement stages. Ichthyological Research 62: 351–356.

    Article  Google Scholar 

  • Chang, C.-W., C.-H. Lin, Y.-S. Chen, M.-H. Chen & S.-K. Chang, 2012. Age validation, growth estimation and cohort dynamics of the bony flying fish Hirundichthys oxycephalus off eastern Taiwan. Aquatic Biology 15: 251–260.

    Article  Google Scholar 

  • Claverie, T. & P. C. Wainwright, 2014. A morphospace for reef fishes: elongation is the dominant axis of body shape evolution. PLoS ONE 9: e112732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowen, R. K. & S. Sponaugle, 2009. Larval dispersal and marine population connectivity. Annual Reviews in Marine Science 1: 443–466.

    Article  Google Scholar 

  • Daneri, G., V. Dellarossa, R. Quiñones, B. Jacob, P. Montero & O. Ulloa, 2000. Primary production and community respiration in the Humboldt Current System off Chile and associated oceanic areas. Marine Ecology Progress Series 197: 41–49.

    Article  Google Scholar 

  • Depczynski, M. & D. R. Bellwood, 2003. The role of cryptobenthic reef fishes in coral reef trophodynamics. Marine Ecology Progress Series 256: 183–191.

    Article  Google Scholar 

  • Díaz-Astudillo, M., M. I. Castillo, M. A. Cáceres, G. Plaza & M. F. Landaeta, 2017. Oceanographic and lunar forcing affects nearshore larval fish assemblages from temperate rocky reefs. Marine Biology Research 13: 1015–1026.

    Article  Google Scholar 

  • Díaz-Astudillo, M., M. F. Landaeta, V. Bernal-Durán, M. I. Castillo, M. Alvarado-Niño & D. Alarcón, 2019. The influence of regional and local oceanography in early stages of marine fishes from temperate rocky reefs. Marine Biology 166: 42.

    Article  Google Scholar 

  • Docmac, F., M. Araya, I. A. Hinojosa, C. Dorador & C. Harrod, 2017. Habitat coupling writ large: pelagic-derived materials fuel benthivorous macroalgal reef fishes in an upwelling zone. Ecology 98: 2267–2272.

    Article  PubMed  Google Scholar 

  • Dryden, I. L. & K. V. Mardia, 1998. Statistical Shape Analysis. Wiley, Chichester.

    Google Scholar 

  • Erwin, D. H., 2007. Disparity: morphological pattern and developmental context. Palaentology 50: 57–73.

    Article  Google Scholar 

  • Essig, R. J., & Cole, C. F. 1986. Methods of estimating larval fish mortality from daily increments in otoliths. Transactions of the American Fisheries Society 115: 34–40.

    Article  Google Scholar 

  • Fiksen, Ø., C. Jørgensen, T. Kristiansen, F. Vikebø & G. Huse, 2007. Linking behavioural ecology and oceanography: larval behaviour determines growth, mortality and dispersal. Marine Ecology Progress Series 347: 195–205.

    Article  Google Scholar 

  • Frédérich, B. & P. Vandewalle, 2011. Bipartite life cycle of coral reef fishes promotes increasing shape disparity of the head skeleton during ontogeny: an example from damselfishes (Pomacentridae). BMC Evolutionary Biology 11: 82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frédérich, B., D. Adriaens & P. Vandewalle, 2008. Ontogenetic shape changes in Pomacentridae (Teleostei: Perciformes) and their relationships with feeding strategies: a geometric morphometrics approach. Biological Journal of the Linnean Society 95: 92–105.

    Article  Google Scholar 

  • Hamilton, S. L., J. Regetz & R. R. Warner, 2008. Postsettlement survival linked to larval life in a marine fish. Proceedings of the National Academy of Sciences of USA 105: 1561–1566.

    Article  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaentologia Electronica 4(1): 1–9.

    Google Scholar 

  • Hernández-Miranda, E., A. T. Palma & F. P. Ojeda, 2003. Larval fish assemblages in nearshore coastal waters off central Chile: temporal and spatial patterns. Estuarine, Coastal and Shelf Science 56: 1075–1092.

    Article  Google Scholar 

  • Hormazábal, S., G. Shaffer & O. Leth, 2004. Coastal transition zone off Chile. Journal of Geophysical Research: Oceans 109: C01021.

    Article  Google Scholar 

  • Houde, E. D., 1989. Subtleties and episodes in the early life of fishes. Journal of Fish Biology 35(Suppl A): 29–38.

    Google Scholar 

  • Jahnsen-Guzmán, N., V. Bernal-Durán & M. F. Landaeta, 2018. Parasitic copepods affect morphospace and diet of larvae of a temperate reef fish. Journal of Fish Biology 92: 330–346.

    Article  PubMed  Google Scholar 

  • Klingenberg, C. P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11: 353–357.

    Article  PubMed  Google Scholar 

  • Klingenberg, C. P., 2013. Visualizations in geometric morphometrics: how to read and how to make graphs showing shape changes. Hystrix 24: 15–24.

    Google Scholar 

  • Klingenberg, C. P. & G. S. McIntyre, 1998. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 52: 1363–1375.

    Article  PubMed  Google Scholar 

  • Kohn, Y. Y. & K. D. Clements, 2011. Pelagic larval duration and population connectivity in New Zealand triplefin fishes (Tripterygiidae). Environmental Biology of Fishes 91: 275–286.

    Article  Google Scholar 

  • Landaeta, M. F. & L. R. Castro, 2013. Vertical distribution and gas bladder inflation/deflation in postlarval anchoveta Engraulis ringens during upwelling events. Journal of the Marine Biological Association of the United Kingdom 93: 321–331.

    Article  Google Scholar 

  • Landaeta, M. F., G. A. Herrera, M. Pedraza, C. A. Bustos & L. R. Castro, 2006. Reproductive tactics and larval development of bigeye flounder, Hippoglossina macrops, off central Chile. Journal of the Marine Biological Association of the United Kingdom 86: 1253–1264.

    Article  Google Scholar 

  • Landaeta, M. F., R. Veas, J. Letelier & L. R. Castro, 2008. Larval fish assemblages off central Chile upwelling ecosystem. Revista de Biología Marina y Oceanografía 43: 569–584.

    Article  Google Scholar 

  • Landaeta, M. F., J. E. Contreras, C. A. Bustos & A. Pérez-Matus, 2015a. Growth and condition of larval rockfish in a Patagonian fjord-type inlet: role of hydrographic conditions and food availability. Aquatic Ecology 49: 573–584.

    Article  CAS  Google Scholar 

  • Landaeta, M. F., F. Zavala-Muñoz, P. Palacios-Fuentes, C. A. Bustos, M. Alvarado-Niño, J. Letelier, M. A. Cáceres & G. Muñoz, 2015b. Spatial and temporal variations of coastal fish larvae, ectoparasites and oceanographic conditions off central Chile. Revista de Biología Marina y Oceanografía 50: 563–574.

    Article  Google Scholar 

  • Landaeta, M. F., V. Nowajewski, L. D. Paredes & C. A. Bustos, 2019. Early life history traits of the blenny Auchenionchus crinitus (Teleostei: Labrisomidae) off northern Chile. Journal of the Marine Biological Association of the United Kingdom 99: 969–974.

    Article  CAS  Google Scholar 

  • Lasker, R., 1975. Field criteria for survival of anchovy larvae: the relation between inshore chlorophyll maximum layers and successful first feeding. Fishery Bulletin 73: 453–462.

    Google Scholar 

  • Lasker, R., 1978. The relation between oceanographic conditions, and larval anchovy food in the California Current: identification of factors contributing to recruitment failure. Rapports et Proces-Verbaux des Reunions du Conseil Internatonal pour l’Exploration de la Mer 173: 212–230.

    Google Scholar 

  • MacKenzie, B. R. & T. Kiorbøe, 2000. Larval fish feeding and turbulence: a case from the downside. Limnology and Oceanography 45: 1–10.

    Article  Google Scholar 

  • Mansur, L., D. Catalán, G. Plaza, M. F. Landaeta & F. P. Ojeda, 2013. Validation of the daily periodicity of increment deposition in rocky intertidal fish otoliths of the south-eastern Pacific Ocean. Revista de Biología Marina y Oceanografía 48: 629–633.

    Article  Google Scholar 

  • Mansur, L., G. Plaza, M. F. Landaeta & F. P. Ojeda, 2014. Planktonic duration in fourteen species of intertidal rocky fishes from the south-eastern Pacific Ocean. Marine and Freshwater Research 65: 901–909.

    Article  Google Scholar 

  • Meekan, M. G., J. H. Carleton, A. D. McKinnon, K. Flynn & M. Furnas, 2003. What determines the growth of tropical reef fish larvae in the plankton: food or temperature. Marine Ecology Progress Series 256: 193–204.

    Article  Google Scholar 

  • Mitteroecker, P., P. Gunz, S. Windhager & K. Schaefer, 2013. A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology. Hystrix 24: 59–66.

    Google Scholar 

  • Muñoz, A. A. & F. P. Ojeda, 1997. Feeding guild structure of a rocky intertidal fish assemblage in central Chile. Environmental Biology of Fishes 49: 471–479.

    Article  Google Scholar 

  • Narváez, D. A., E. Poulin, G. Leiva, E. Hernández, J. C. Castilla & S. A. Navarrete, 2004. Seasonal and spatial variation of nearshore hydrographic conditions in central Chile. Continental Shelf Research 24: 279–292.

    Article  Google Scholar 

  • Nielsen, K. J. & S. A. Navarrete, 2004. Mesoscale regulation comes from the bottom-up: intertidal interactions between consumers and upwelling. Ecology Letters 7: 31–41.

    Article  Google Scholar 

  • Nikolakakis, S., P. Bossier, G. Kanlis, K. Dierckens & D. Adriaens, 2014. Protocol for quantitative shape analysis of deformities in early larval European sea bass Dicentrarchus labrax. Journal of Fish Biology 84: 206–224.

    Article  CAS  PubMed  Google Scholar 

  • Palacios-Fuentes, P., M. F. Landaeta, N. Jahnsen-Guzmán, G. Plaza & F. P. Ojeda, 2014. Hatching patterns and larval growth of a triplefin from central Chile inferred by otolith microstructure analysis. Aquatic Ecology 48: 259–266.

    Article  CAS  Google Scholar 

  • Palacios-Fuentes, P., M. F. Landaeta, M. T. González, G. Plaza, F. P. Ojeda & G. Muñoz, 2015. Is ectoparasite burden related to host density? Evidence from nearshore fish larvae off the coast of central Chile. Aquatic Ecology 49: 91–98.

    Article  Google Scholar 

  • Peterman, R. M. & M. J. Bradford, 1987. Wind speed and mortality rate of a marine fish. The northern anchovy (Engraulis mordax). Science 235: 354–356.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, W. T., D. F. Arcos, G. B. McManus, H. Dam, D. Bellantoni, T. Johnson & P. Tiselius, 1988. The nearshore zone during coastal upwelling: daily variability and coupling between primary and secondary production off central Chile. Progress in Oceanography 20: 1–40.

    Article  Google Scholar 

  • Pickett, M. H. & J. D. Paduan, 2003. Ekman transport and pumping in the California Current based on the U.S. Navy’s high-resolution atmospheric model (COAMPS). Journal of Geophysical Research 108(C10): 3327.

    Article  Google Scholar 

  • Pino-Pinuer, P., R. Escribano, P. Hidalgo, R. Riquelme-Bugueño & W. Schneider, 2014. Copepod community response to variable upwelling conditions off central-southern Chile during 2002–2004 and 2010–2012. Marine Ecology Progress Series 515: 83–95.

    Article  Google Scholar 

  • Poulin, E., Palma, A. T., Leiva, G., Narváez, D., Pacheco, R., Navarrete, S., Castilla, J. C. 2002. Avoiding offshore transport of competent larvae during upwelling events: the case of the gastropod Concholepas concholepas in central Chile. Limnology and Oceanography 47: 1248–1255.

    Article  Google Scholar 

  • Pulgar, J., M. Alvarez, J. Morales, M. Garcia-Huidobro, M. Aldana, F. P. Ojeda & V. M. Pulgar, 2011. Impact of oceanic upwelling on morphometric and molecular indices of an intertidal fish Scartichthys viridis (Blenniidae). Marine and Freshwater Behaviour and Physiology 44: 33–42.

    Article  Google Scholar 

  • Rodríguez-Valentino, C., M. F. Landaeta, G. Castillo-Hidalgo, C. A. Bustos, G. Plaza & F. P. Ojeda, 2015. Interannual variations in the hatching pattern, larval growth and otolith size of a sand-dwelling fish from central Chile. Helgoland Marine Research 69: 293–303.

    Article  Google Scholar 

  • Rooker, J. R., S. A. Holt, G. J. Holt & L. A. Fuiman, 1999. Spatial and temporal variability in growth, mortality and recruitment potential of postsettlement red drum, Sciaenops ocellatus, in a subtropical estuary. Fishery Bulletin 97: 581–590.

    Google Scholar 

  • Sáez, S. & G. Pequeño, 2009. Updated, illustrated and annotated taxonomic key for fishes of the family Labrisomidae from Chile (Perciformes, Blennioidei). Gayana 73: 130–140.

    Google Scholar 

  • Searcy, S. P. & S. Sponaugle, 2000. Variable larval growth in a coral reef fish. Marine Ecology Progress Series 206: 213–226.

    Article  Google Scholar 

  • Searcy, S. P. & S. Sponaugle, 2001. Selective mortality during the larval-juvenile transition in two coral reef fishes. Ecology 82: 2452–2470.

    Google Scholar 

  • Shaffer, G., O. Pizarro, L. Djurfeldt, S. Salinas & J. Rutllant, 1997. Circulation and low-frequency variability near the Chilean coast: remotely forced fluctuations during the 1991–92 El Niño. Journal of Physical Oceanography 27: 217–235.

    Article  Google Scholar 

  • Shaffer, G., S. Hormazábal, O. Pizarro & S. Salinas, 1999. Seasonal and interannual variability of currents and temperature off central Chile. Journal of Geophysical Research: Oceans 104: 29951–29961.

    Article  Google Scholar 

  • Smith, A. C. & J. S. Shima, 2011. Variations in the effect of larval history on juvenile performance of a temperate reef fish. Austral Ecology 36: 830–838.

    Article  Google Scholar 

  • Tapia, F. J., J. Pineda, F. J. Ocampo-Torres, H. L. Fuchs, P. E. Parnell, P. Montero & S. Ramos, 2004. High-frequency observations of wind-forced onshore transport at a coastal site in Baja California. Continental Shelf Research 24: 1573–1585.

    Article  Google Scholar 

  • Thorrold, S. R. & D. Mc. B. Williams, 1989. Analysis of otolith microstructure to determine growth histories in larval cohorts of a tropical herring (Herklotsichthys castelnaui). Canadian Journal of Fisheries and Aquatic Science 46: 1615–1624.

    Article  Google Scholar 

  • Van Wassenbergh, S., N. Z. Potes & D. Adriaens, 2015. Hydrodynamic drag constrains head enlargement for mouthbrooding in cichlids. Journal of the Royal Society Interface 12: 20150461.

    Article  PubMed Central  Google Scholar 

  • Vera-Duarte, J. & M. F. Landaeta, 2016. Diet of labrisomid blenny Auchenionchus variolosus (Valenciennes, 1836) (Labrisomidae) during its larval development off central Chile (2012–2013). Journal of Applied Ichthyology 32: 46–54.

    Article  Google Scholar 

  • Vignon, M., 2012. Ontogenetic trajectories of otolith shape during shift in habitat use: interaction between otolith growth and environment. Journal of Experimental Marine Biology and Ecology 420–421: 26–32.

    Article  Google Scholar 

  • Vignon, M. & F. Morat, 2010. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Marine Ecology Progress Series 411: 231–241.

    Article  Google Scholar 

  • Webb, P. W. & P. Weihs, 1986. Functional locomotor morphology of early life history stages of fishes. Transactions of the America Fisheries Society 115: 115–127.

    Article  Google Scholar 

  • Wieters, E. A., D. M. Kaplan, S. A. Navarrete, A. Sotomayor, J. Largier, K. J. Nielsen & F. Véliz, 2003. Alongshore and temporal variability in chlorophyll a concentration in Chilean nearshore waters. Marine Ecology Progress Series 249: 93–105.

    Article  Google Scholar 

  • Zar, J. H., 2006. Biostatistical Analysis, 5th ed. Prentice Hall, Upper Saddle River: 947 p.

    Google Scholar 

  • Zelditch, M. L., H. D. Sheets & W. L. Fink, 2003. The ontogenetic dynamics of shape disparity. Paleobiology 29: 139–156.

    Article  Google Scholar 

Download references

Acknowledgements

The order of the co-authors is alphabetical. Two anonymous reviewers helped with ideas to improve an early version of the manuscript. This research was completely funded by Comisión Nacional de Ciencia y Tecnología, CONICYT, through the Project FONDECYT 1150296 granted to MFL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio F. Landaeta.

Additional information

Handling editor: I. Nagelkerken

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landaeta, M.F., Bernal-Durán, V., Castillo, M.I. et al. Nearshore environmental conditions influence larval growth and shape changes for a temperate rocky reef fish. Hydrobiologia 839, 159–176 (2019). https://doi.org/10.1007/s10750-019-04004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04004-3

Keywords

Navigation