Skip to main content

Advertisement

Log in

Relationships between fisheries, foodweb structure, and detrital pathway in a large shallow lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We modeled energy transfer and trophic position of fish, plankton, and macroinvertebrates and the relative importance of top-down versus bottom-up processes in Lake Võrtsjärv, a large shallow eutrophic lake in Estonia (northeastern Europe). We employed input values based on 37 years of biomass and fishing activity monitoring for calibrating the Ecopath with Ecosim (EwE) model. Energy flows from primary producers and detritus, represented by total system throughput, were nearly equal (51 and 49%, respectively). Simulation revealed that top-down and bottom-up forces were at play, metazooplankton was not efficiently grazing phytoplankton production, and a trophic cascade proceeded through macroinvertebrates rather than through zooplankton. Detritivory was responsible for the relatively low trophic position of Võrtsjärv fish compared to other lakes. Bottom-up processes were the main drivers for the dual, primary production- and detritus-based pathways in energy flow. Our findings suggest that the predicted biomass increase of cyanobacteria in shallow lakes in the future will strengthen the reliance of consumers on the detrital pathway at the expense of the primary production pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander, K. A., J. J. Heymans, S. Magill, M. T. Tomczak, S. J. Holmes & T. A. Wilding, 2015. Investigating the recent decline in gadoid stocks in the west of Scotland shelf ecosystem using a foodweb model. ICES Journal of Marine Science 72: 436–449.

    Article  Google Scholar 

  • Andersson, E. & S. Sobek, 2006. Comparison of a mass balance and an ecosystem model approach when evaluating the carbon cycling in a lake ecosystem. Ambio 35: 476–483.

    Article  PubMed  CAS  Google Scholar 

  • Attayde, J. L. & J. Ripa, 2008. The coupling between grazing and detritus food chains and the strength of trophic cascades across a gradient of nutrient enrichment. Ecosystems 11: 980–990.

    Article  Google Scholar 

  • Brey, T., 1999. A collection of empirical relations for use in ecological modelling. NAGA the ICLARM Quaterly 22: 24–28.

    Google Scholar 

  • Brey T., 2001. Population dynamics in benthic invertebrates. A virtual handbook. http://thomas-brey.de/science/virtualhandbook.

  • Bunnell, D. B., R. P. Barbiero, S. A. Ludsin, C. P. Madenjian, G. J. Warren, D. M. Dolan, T. O. Brenden, R. Briland, O. T. Gorman, J. X. He, T. H. Johengen, B. F. Lantry, B. M. Lesht, T. F. Nalepa, S. C. Riley, C. M. Riseng, T. J. Treska, I. Tsehaye, M. G. Walsh, D. M. Warner & B. C. Weidel, 2014. Changing ecosystem dynamics in the Laurentian Great Lakes: bottom-up and top-down regulation. BioScience 64: 26–39.

    Article  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.

    Article  Google Scholar 

  • Carpenter, S. R., J. J. Cole, J. R. Hodgson, J. F. Kitchell, M. L. Pace, D. Bade, K. L. Cottingham, T. E. Essington, J. N. Houser & D. E. Schindler, 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs 71: 163–186.

    Article  Google Scholar 

  • Christensen, V. & C. Walters, 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecological Modelling 172: 109–139.

    Article  Google Scholar 

  • Cremona, F., H. Timm, H. Agasild, I. Tõnno, T. Feldmann, R. I. Jones & T. Nõges, 2014a. Benthic foodweb structure in a large shallow lake studied by stable isotope analysis. Freshwater Science 33: 885–894.

    Article  Google Scholar 

  • Cremona, F., T. Kõiv, V. Kisand, A. Laas, P. Zingel, H. Agasild, T. Feldmann, A. Järvalt, P. Nõges & T. Nõges, 2014b. From bacteria to piscivorous fish: estimates of whole-lake and component-specific metabolism with an ecosystem approach. PloS ONE 9: e101845.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cremona, F., A. Laas, L. Arvola, D. Pierson, P. Nõges & T. Nõges, 2016. Numerical exploration of the planktonic to benthic primary production ratios in lakes of the Baltic Sea catchment. Ecosystems 19: 1386–1400.

    Article  CAS  Google Scholar 

  • Darwall, W. R. T., E. H. Allison, G. F. Turner & K. Irvine, 2010. Lake of flies, or lake of fish? A trophic model of Lake Malawi. Ecological Modelling 221: 713–727.

    Article  CAS  Google Scholar 

  • Froese, R. & D. Pauly D (eds), 2017. Fishbase. World wide web electronic publication, www.fishbase.org.

  • Grønkjær, P., C. Skov & S. Berg, 2004. Otolith-based analysis of survival and size-selective mortality of stocked 0+ year pike related to time of stocking. Journal of Fish Biology 64: 1625–1637.

    Article  Google Scholar 

  • Hairston Jr., N. G. & N. G. Hairston, 1993. Cause effect relationships in energy flow, trophic structure, and interspecific interactions. The American Naturalist 142: 379–411.

    Article  Google Scholar 

  • Heymans, J. J., M. Coll, J. S. Link, S. Mackinson, J. Steenbeek, C. Walters & V. Christensen, 2016. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecological Modelling 331: 173–184.

    Article  Google Scholar 

  • Horppila, J., H. Peltonen, T. Malinen, E. Luokkanen & T. Kairesalo, 1998. Top-down or bottom-up effects by fish: issues of concern in biomanipulation of lakes. Restoration Ecology 6: 20–28.

    Article  Google Scholar 

  • Järvalt, A., 1998. Estimation of fishing mortality and abundance of pikeperch Stizostedion lucioperca (L.) in Lake Võrtsjärv, Estonia. Limnologica 28: 109–113.

    Google Scholar 

  • Järvalt, A., A. Kangur, K. Kangur, P. Kangur & E. Pihu, 2004. Fishes and fisheries management. In Haberman, J., E. Pihu & A. Raukas (eds), Lake Võrtsjärv. Estonian Encyclopaedia Publishers, Tallinn: 281–295.

    Google Scholar 

  • Jeppesen, E., M. Sondergaard, T. L. Lauridsen, T. A. Davidson, Z. Liu, N. Mazzeo, C. Trochine, K. Ozkan, H. S. Jensen, D. Trolle, F. Starling, X. Lazzaro, L. S. Johansson, R. Bjerring, L. Liboriussen, S. E. Larsen, F. Landkildehus & M. Meerhoff, 2012. Biomanipulation as a restoration tool to combat eutrophication: recent advances and future challenges. Advances in Ecological Research 47: 411–487.

    Article  Google Scholar 

  • Jeppesen, E., M. Meerhoff, T. A. Davidson, D. Trolle, M. Søndergaard, T. L. Lauridsen, M. Beklioglu, S. Brucet, P. Volta, I. Gonzalez-Bergonzoni & A. Nielsen, 2014. Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. Journal of Limnology 73: 88–111.

    Article  Google Scholar 

  • Kangur, K., 2015. Katsemetoodika: makrozoobentose liiglise koosseisu ja biomassi määramine. Estonian University of Life Sciences (in Estonian), Centre for Limnology.

    Google Scholar 

  • Kangur, K., A. Kangur & P. Kangur, 1999. A comparative study on the feeding of eel, Anguilla anguilla (L.), bream, Abramis brama (L.) and ruffe, Gymnocephalus cernuus (L.) in Lake Võrtsjärv, Estonia. In Shallow Lakes’ 98 (pp. 65–72). Springer Netherlands. https://doi.org/10.1007/978-94-017-2986-4_7.

  • Kangur, P., A. Kangur & K. Kangur, 2007. Dietary importance of various prey fishes for pikeperch Sander lucioperca (L.) in large shallow lake Võrtsjärv (Estonia). Proceedings of the Estonian Academy of Sciences: Biology, Ecology 56: 154–167.

    Google Scholar 

  • Kavanagh, P., N. Newlands, V. Christensen & D. Pauly, 2004. Automated parameter optimization for Ecopath ecosystem models. Ecological Modelling 172: 141–149.

    Article  Google Scholar 

  • Link, J. S., 2010. Adding rigor to ecological network models by evaluating a set of pre-balance diagnostics: a plea for PREBAL. Ecological Modelling 221: 1580–1591.

    Article  Google Scholar 

  • McGregor, A. M., 2013. Using Ecopath modeling to describe historical conditions for a large, Boreal lake ecosystem prior to European Settlement. North American Journal of Fisheries Management 34: 16–29.

    Article  Google Scholar 

  • Moore, J. C., E. L. Berlow, D. C. Coleman, P. C. Ruiter, Q. Dong, A. Hastings, N. C. Johnson, K. S. McKann, K. Melville, P. J. Morin, K. Nadelhoffer, A. D. Rosemond, D. M. Post, J. L. Sabo, K. M. Scow, M. J. Vanni & D. H. Wall, 2004. Detritus, trophic dynamics and biodiversity. Ecology letters 7: 584–600.

    Article  Google Scholar 

  • Montagnes, D. J. S., D. H. Lynn, J. C. Roff & W. D. Taylor, 1988. The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Marine Biology 99: 21–30.

    Article  Google Scholar 

  • Morissette, L., M. O. Hammill & C. Savenkoff, 2006. The trophic role of marine mammals in the northern Gulf of St Lawrence. Marine Mammal Science 22: 74–103.

    Article  Google Scholar 

  • Nõges, T., P. Nõges, A. Kisand, V. Kisand, L. Tuvikene, P. Zingel, A. Põllumäe & J. Haberman, 1998. Ecological studies. In: Huttula T. & T. Nõges (eds). Present state and future state of Lake Võrtsjärv. The Finnish Environment 209: 79–112.

  • Nõges, T., P. Nõges & R. Laugaste, 2003. Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506: 257–263.

    Article  Google Scholar 

  • Nõges, T., H. Arst, A. Laas, T. Kauer, P. Nõges & K. Toming, 2011. Reconstructed long-term time series of phytoplankton primary production of a large shallow temperate lake: the basis to assess the carbon balance and its climate sensitivity. Hydrobiologia 667: 205–222.

    Article  CAS  Google Scholar 

  • Nõges, T., A. Järvalt, J. Haberman, P. Zingel & P. Nõges, 2016a. Is fish able to regulate filamentous blue-green dominated phytoplankton? Hydrobiologia 780: 59–69.

    Article  CAS  Google Scholar 

  • Nõges, P., F. Cremona, A. Laas, T. Martma, E.-I. Rõõm, K. Toming, M. Viik, S. Vilbaste & T. Nõges, 2016b. Role of a productive lake in carbon sequestration within a calcareous catchment. Science of the Total Environment 550: 225–230.

    Article  PubMed  CAS  Google Scholar 

  • Odum, E. P., 1971. Fundamentals of ecology, Vol. 3. Saunders, Philadelphia: 624.

    Google Scholar 

  • Ojaveer, E., E. Pihu & T. Saat, 2003. Fishes of Estonia. Estonian Academy Publishers, Tallinn: 416.

    Google Scholar 

  • Paerl, H. W., R. S. Fulton, P. H. Moisander & J. Dyble, 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. The Scientific World Journal 1: 76–113.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Palomares, M. L. D. & D. Pauly, 1998. Predicting food consumption of fish populations as functions of mortality, food type, morphometrics, temperature and salinity. Marine and Freshwater Research 49: 447–453.

    Article  CAS  Google Scholar 

  • Pauly, D., 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. Journal du Conseil Permanent International pour l’Exploration de la Mer 39: 175–192.

    Article  Google Scholar 

  • Persad, G. & M. Webber, 2009. The use of ecopath software to model trophic interactions within the zooplankton community of discovery bay, Jamaica. The Open Marine Biology Journal 3: 95–104.

    Article  Google Scholar 

  • Polovina, J. J., 1984. Model of a coral reef ecosystem. Coral Reefs 3: 1–11.

    Article  Google Scholar 

  • Power, M., 1992. Top-down and bottom-up forces in food webs: do plants have primacy? Ecology 73: 733–746.

    Article  Google Scholar 

  • Ricciardi, A. & E. Bourget, 1998. Weight-to-weight conversion factors for marine benthic macroinvertebrates. Marine Ecology Progress Series 163: 245–251.

    Article  Google Scholar 

  • Rychert, K., J. Koslowska, K. Krawiec, N. Czychewicz, M. Paczkowska & M. Wielgat-Rychert, 2016. Annual production to biomass (P/B) ratios of pelagic ciliates in different temperate waters. Oceanological and Hydrobiological Studies 45: 388–404.

    CAS  Google Scholar 

  • Tomczak, M. T., B. Müller-Karulis, L. Järv, J. Kotta, G. Martin, A. Minde, A. Põllumäe, A. Razinkovas, S. Strake, M. Bucas & T. Blenckner, 2009. Analysis of trophic networks and carbon flows in south-eastern Baltic coastal ecosystems. Progress in Oceanography 81: 111–131.

    Article  Google Scholar 

  • Von Bertalanffy, L., 1938. A quantitative theory of organic growth (inquiries on growth laws. II). Human biology 10: 181–213.

    Google Scholar 

  • Weidel, B., S. Carpenter, J. J. Cole, J. Hodgson, J. Kitchell, M. Pace & C. Solomon, 2008. Carbon sources supporting fish growth in a north temperate lake. Aquatic Sciences 70: 446–458.

    Article  CAS  Google Scholar 

  • Welker, M. & N. Walz, 1999. Plankton dynamics in a river-lake system—on continuity and discontinuity. Hydrobiologia 408(409): 233–239.

    Article  Google Scholar 

  • Xu, S., Z. Chen, S. Li & P. He, 2011. Modelling trophic structure and energy flows in a coastal artificial ecosystem using mass-balance Ecopath model. Estuaries and Coasts 34: 351–363.

    Article  CAS  Google Scholar 

  • Zingel, P., T. Paaver, K. Karus, H. Agasild & T. Nõges, 2012. Ciliates as the crucial food source of larval fish in a shallow eutrophic lake. Limnology and Oceanography 57: 1049–1056.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Start-Up Personal Research Grant PUT 777 to FC and UB, by IUT 21-2 of the Estonian Ministry of Education and Research, and by MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378 (http://www.mars-project.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Cremona.

Additional information

Handling editor: Mariana Meerhoff

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cremona, F., Järvalt, A., Bhele, U. et al. Relationships between fisheries, foodweb structure, and detrital pathway in a large shallow lake. Hydrobiologia 820, 145–163 (2018). https://doi.org/10.1007/s10750-018-3648-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3648-2

Keywords

Navigation