Skip to main content
Log in

Effectiveness of a multi-slot vertical slot fishway versus a standard vertical slot fishway for potamodromous cyprinids

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Developing and testing new fishway designs is important to improve these facilities. Discharge-efficient passage systems are required in Mediterranean regions and other areas with dry climates. The present study compares the passage performance of the Iberian barbel, Luciobarbus bocagei (Steindachner, 1864), a potamodromous cyprinid, negotiating two different types of vertical slot fishways (VSF): a standard VSF and a multi-slot VSF (MSF). Results show that differences exist between configurations in the number of fish movements through the first slot. The I. barbel performed a significantly higher number of movements in the MSF. However, no differences were found in the entrance time and entry efficiency. The performance was similar between configurations in terms of successes, suggesting that both fishways could be used to restore longitudinal connectivity. Nevertheless, the MSF is a more discharge-efficient configuration, since it requires 31% less water to operate for the same water depth in the pools. Consequently, the velocity and turbulence have lower magnitudes which generally favour the negotiation by smaller individuals. Since it is a more discharge-efficient and cost-efficient configuration, future studies should focus on the passage performance of smaller species to determine if MSF is a useful solution for the whole fish community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexandre, C. M., B. R. Quintella, A. F. Ferreira, F. A. Romão & P. R. Almeida, 2014. Swimming performance and ecomorphology of the Iberian barbel Luciobarbus bocagei (Steindachner, 1864) on permanent and temporary rivers. Ecology of Freshwater Fish 23(2): 244–258.

    Article  Google Scholar 

  • Anderson, M. J. & J. Robinson, 2001. Permutation tests for linear models. Australian & New Zealand Journal of Statistics 43(1): 75–88.

    Article  Google Scholar 

  • Anderson, M. R., N. Gorley, & R. K. Clarke, 2008. Permanova + for Primer: Guide to Software and Statistical Methods.

  • Beamish, F. W. H., 1978. Swimming capacity. In Hoar, W. S. & D. J. Randall (eds.), Fish Physiology, Vol. 7. Academic Press, New York: 101–187.

    Google Scholar 

  • Bednarek, A. T., 2001. Undamming rivers: a review of the ecological impacts of dam removal. Environmental Management 27(6): 803–814.

    Article  CAS  PubMed  Google Scholar 

  • Branco, P., P. Segurado, J. M. Santos, P. Pinheiro & M. T. Ferreira, 2012. Does longitudinal connectivity loss affect the distribution of freshwater fish? Ecological Engineering 48: 70–78.

    Article  Google Scholar 

  • Branco, P. J., J. M. Santos, C. Katopodis, A. N. Pinheiro & M. T. Ferreira, 2013a. Pool-type fishways: two different morpho-ecological cyprinid species facing plunging and streaming flows. PLoS ONE 8(5): e65089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branco, P. J., J. M. Santos, C. Katopodis, A. N. Pinheiro & M. T. Ferreira, 2013b. Effect of flow regime hydraulics on passage performance of Iberian chub (Squalius pyrenaicus) (Gunther, 1868) in an experimental pool-and-weir fishway. Hydrobiologia 714(1): 145–154.

    Article  Google Scholar 

  • Branco, P., J. M. Santos, S. Amaral, F. Romao, A. N. Pinheiro & M. T. Ferreira, 2016. Potamodromous fish movements under multiple stressors: connectivity reduction and oxygen depletion. Science of the Total Environment 572: 520–525.

    Article  CAS  PubMed  Google Scholar 

  • Bunt, C. M., T. Castro-Santos & A. Haro, 2012. Performance of fish passage structures at upstream barriers to migration. River Research and Applications 28(4): 457–478.

    Article  Google Scholar 

  • Bunt, C. M., T. Castro-Santos & A. Haro, 2016. Reinforcement and validation of the analyses and conclusions related to fishway evaluation data from bunt et al. Performance of fish passage structures at upstream barriers to migration. River Research and Applications 32(10): 2125–2137.

    Article  Google Scholar 

  • Calles, O. & L. Greenberg, 2009. Connectivity is a two-way street—the need for a holistic approach to fish passage problems in regulated rivers. River Research and Applications 25(10): 1268–1286.

    Article  Google Scholar 

  • Castro-Santos, T., F. J. Sanz-Ronda & J. Ruiz-Legazpi, 2013. Breaking the speed limit—comparative sprinting performance of brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Sciences 70(2): 280–293.

    Article  Google Scholar 

  • Clay, C. H., 1995. Design of Fishways and Other Fish Facilities. Lewis Publishers, Ann Arbor.

    Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81(2): 163–182.

    Article  PubMed  Google Scholar 

  • DVWK FAO, 2002. Fish Passes: Design, Dimensions, and Monitoring.

  • Enders, E. C., D. Boisclair & A. G. Roy, 2003. The effect of turbulence on the cost of swimming for juveniles of Atlantic Salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 60(9): 1149–1160.

    Article  Google Scholar 

  • European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for the Community action in the field of water policy. Official Journal of the European Communities L 327: 1–72.

    Google Scholar 

  • Farrell, A. P., 2011. Encyclopedia of Fish Physiology: From Genome to Environment. Academic Press, San Diego.

    Google Scholar 

  • Feurich, R., J. Boubée & N. R. B. Olsen, 2012. Improvement of fish passage in culverts using CFD. Ecological Engineering 47: 1–8.

    Article  Google Scholar 

  • Fuentes-Pérez, J. F., A. T. Silva, J. A. Tuhtan, A. García-Vega, R. Carbonell-Baeza, M. Musall & M. Kruusmaa, 2018. 3D modelling of non-uniform and turbulent flow in vertical slot fishways. Environmental Modelling & Software 99: 156–169.

    Article  Google Scholar 

  • Hammer, C., 1995. Fatigue and exercise tests with fish. Comparative Biochemistry and Physiology Part A: Physiology 112(1): 1–20.

    Article  Google Scholar 

  • Katopodis, C., 2005. Developing a toolkit for fish passage, ecological flow management and fish habitat works. Journal of Hydraulic Research 43(5): 451–467.

    Article  Google Scholar 

  • Katopodis, C. & J. G. Williams, 2012. The development of fish passage research in a historical context. Ecological Engineering 48: 8–18.

    Article  Google Scholar 

  • Katopodis, C., J. A. Kells & M. Acharya, 2001. Nature-like and conventional fishways: alternative concepts? Canadian Water Resources Journal 26(2): 211–232.

    Article  Google Scholar 

  • Kim, S., K. Yu, B. Yoon & Y. Lim, 2012. A numerical study on hydraulic characteristics in the ice Harbor-type fishway. KSCE Journal of Civil Engineering 16(2): 265–272.

    Article  Google Scholar 

  • Kolden, E., B. D. Fox, B. P. Bledsoe & M. C. Kondratieff, 2016. Modelling whitewater park hydraulics and fish habitat in Colorado. River Research and Applications 32(5): 1116–1127.

    Article  Google Scholar 

  • Kottelat, M., & J. Freyhof, 2007. Handbook of European freshwater fishes. Publications Kottelat.

  • Larinier, M., 2002. Pool fishways, pre-barrages and natural bypass channels. BFPP-Connaissance et Gestion du Patrimoine Aquatique 364: 54–82.

    Google Scholar 

  • Liao, J. C., 2007. A review of fish swimming mechanics and behaviour in altered flows. Philosophical Transactions of the Royal Society of London B: Biological Sciences 362(1487): 1973–1993.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, M., N. Rajaratnam & D. Z. Zhu, 2006. Mean flow and turbulence structure in vertical slot fishways. Journal of Hydraulic Engineering 132(8): 765–777.

    Article  Google Scholar 

  • Link, O., C. Sanhueza, P. Arriagada, W. Brevis, A. Laborde, A. González & E. Habit, 2017. The fish Strouhal number as a criterion for hydraulic fishway design. Ecological Engineering 103: 118–126.

    Article  Google Scholar 

  • Lucas, M. C. & E. Baras, 2001. Migration of Freshwater Fishes. Blackwell Science Ltd, Durham.

    Book  Google Scholar 

  • Lupandin, A. I., 2005. Effect of flow turbulence on swimming speed of fish. Biology Bulletin 32: 461–466.

    Article  Google Scholar 

  • Mader H., J. Kern, & M. Schober, 2012. Enature® multistructure slot fishpass—functioning analyses for “Hucho hucho” and “Silarus glanis”. Published in the 9th International Symposium on Ecohydraulics 2012 Proceedings. Edited by Helmut Mader & Julia Kraml.

  • Mallen-Cooper, M. & D. A. Brand, 2007. Non-salmonids in a salmonid fishway: what do 50 years of data tell us about past and future fish passage? Fisheries Management and Ecology 14(5): 319–332.

    Article  Google Scholar 

  • Mallen-Cooper, M., B. Zampatti, I. Stuart, & L. Baumgartner, 2008. Innovative fishways—manipulating turbulence in the vertical-slot design to improve performance and reduce cost. Murray-Darling Basin Commission.

  • Mateus, C. S., B. R. Quintella & P. R. Almeida, 2008. The critical swimming speed of Iberian barbel Barbus bocagei in relation to size and sex. Journal of Fish Biololy 73: 1783–1789.

    Article  Google Scholar 

  • Moller, H., 2012. Hydropower Continues Steady Growth. Earth Policy Institute, Washington, D.C.

    Google Scholar 

  • Nooman, M. J., J. W. Grant & C. D. Jackson, 2012. A quantitative assessment of fishpassage efficiency. Fish and Fisheries 13: 450–454.

    Article  Google Scholar 

  • Odeh, M., J. F. Noreika, A. Haro, A. Maynard, & T. Castro-Santos, 2002. Evaluation of the effects of turbulence on the behavior of migratory fish. Final Report to the Bonneville Power Administration, Contract 00000022, Project 200005700,Portland, Oregon: 46.

  • Plaut, I., 2001. Critical swimming speed: its ecological relevance. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 131(1): 41–50.

    Article  CAS  Google Scholar 

  • Pon, L. B., S. G. Hinch, C. D. Suski, D. A. Patterson & S. J. Cooke, 2012. The effectiveness of tissue biopsy as a means of assessing the physiological consequences of fishway passage. River Research and Applications 28(8): 1266–1274.

    Article  Google Scholar 

  • Puertas, J., L. Cea, M. Bermúdez, L. Pena, Á. Rodríguez, J. Rabunal, L. Balairón, Á. Lara & E. Aramburu, 2012. Computer application for the analysis and design of vertical slot fishways in accordance with the requirements of the target species. Ecological Engineering 48: 51–60.

    Article  Google Scholar 

  • Quaresma, A. L., R. M. L. Ferreira & A. N. Pinheiro, 2017. Comparative analysis of particle image velocimetry and acoustic Doppler velocimetry in relation to a pool-type fishway flow. Journal of Hydraulic Research 55(4): 582–591.

    Article  Google Scholar 

  • Rajaratnam, N., G. Van der Vinne & C. Katopodis, 1986. Hydraulics of vertical slot fishways. Journal Hydraulic Engineering 112: 909–927.

    Article  Google Scholar 

  • Rajaratman, N., C. Katopodis & S. Solanki, 1992. New designs for vertical slotfishways. Canadian Journal of Civil Engineering 19(3): 402–414.

    Article  Google Scholar 

  • Romão, F., A. L. Quaresma, P. Branco, J. M. Santos, S. Amaral, M. T. Ferreira, C. Katopodis & A. N. Pinheiro, 2017. Passage performance of two cyprinids with different ecological traits in a fishway with distinct vertical slot configurations. Ecological Engineering 108: 180–188.

    Article  Google Scholar 

  • Rodríguez, T. T., J. P. Agudo, L. P. Mosquera & E. P. González, 2006. Evaluating vertical-slot fishway designs in terms of fish swimming capabilities. Ecological Engineering 27: 37–48.

    Article  Google Scholar 

  • Rodriguez-Ruiz, A. & C. Granado-Lorencio, 1992. Spawning period and migration of three species of cyprinids in a stream with Mediterranean regimen (SW Spain). Journal of Fish Biology 41(4): 545–556.

    Article  Google Scholar 

  • Roscoe, D. W. & S. G. Hinch, 2010. Effectiveness monitoring of fish passage facilities: historical trends, geographic patterns and future directions. Fish and Fisheries 11(1): 12–33.

    Article  Google Scholar 

  • Santos, J. M., M. T. Ferreira, F. N. Godinho & J. Bochechas, 2005. Efficacy of a nature-like bypass channel in a Portuguese lowland river. Journal of Applied Ichthyology 21(5): 381–388.

    Article  Google Scholar 

  • Santos, J. M., A. Silva, C. Katopodis, P. Pinheiro, A. Pinheiro, J. Bochechas & M. T. Ferreira, 2012. Ecohydraulics of pool-type fishways: getting past the barriers. Ecological Engineering 48: 38–50.

    Article  Google Scholar 

  • Sanz-Ronda, F. J., F. J. Bravo-Córdoba, J. F. Fuentes-Pérez & T. Castro-Santos, 2016. Ascent ability of brown trout, Salmo trutta, and two Iberian cyprinids—Iberian barbel, Luciobarbus bocagei, and northern straight-mouth nase, Pseudochondrostoma duriense—in a vertical slot fishway. Knowledge and Management of Aquatic Ecosystems 417: 10.

    Article  Google Scholar 

  • Silva, A. T., C. Katopodis, J. M. Santos, M. T. Ferreira & A. N. Pinheiro, 2012. Cyprinid swimming behaviour in response to turbulent flow. Ecological Engineering 44: 314–328.

    Article  Google Scholar 

  • Silva, A. T., C. Hatry, J. D. Thiem, L. F. Gutowsky, D. Hatin, D. Z. Zhu & S. J. Cooke, 2015. Behaviour and locomotor activity of a migratory catostomid during fishway passage. PloS ONE 10(4): e0123051.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tauber, M. & H. Mader, 2009. Development of an Economical and Ecological Optimized Multi Slot Fish Pass. Small Hydro 2008. Vancouver, Canada.

  • Tauber, M. & H. Mader, 2010. Hydraulic comparison of standard vertical slot and multi structure slot fish bypass. The first European IAHR Congress, Edinburgh.

    Google Scholar 

  • Thiem, J. D., T. R. Binder, P. Dumont, D. Hatin, C. Hatry, C. Katopodis & S. J. Cooke, 2013. Multispecies fish passage behaviour in a vertical slot fishway on the Richelieu River, Quebec, Canada. River Research and Applications 29(5): 582–592.

    Article  Google Scholar 

  • Walters, K. & L. D. Coen, 2006. A comparison of statistical approaches to analyzing community convergence between natural and constructed oyster reefs. Journal of Experimental Marine Biology and Ecology 330: 81–95.

    Article  Google Scholar 

  • Wang, R. W., L. David & M. Larinier, 2010. Contribution of experimental fluidmechanics to the design of vertical slot fish passes. Knowledge and Management of Aquatic Ecosystems 396: 02.

    Article  Google Scholar 

  • Weber, J. M., K. Choi, A. Gonzalez & T. Omlin, 2016. Metabolic fuel kinetics in fish: swimming, hypoxia and muscle membranes. Journal of Experimental Marine Biology and Ecology 219(2): 250–258.

    Google Scholar 

  • White, L. J., J. H. Harris & R. J. Keller, 2011. Movement of three non-salmonid fish species through a low-gradient vertical-slot fishway. River Research and Applications 27: 499–510.

    Article  Google Scholar 

  • Williams, J. G., G. Armstrong, C. Katopodis, M. Larinier & F. Travade, 2012. Thinking like a fish: a key ingredient for development of effective fish passage facilities at river obstructions. River Research and Applications 28(4): 407–417.

    Article  Google Scholar 

Download references

Acknowledgements

We thank José Maria Santos, Mario Eckert, Daniel S. Hayes and all the staff of the National Laboratory for Civil Engineering (LNEC) for all the help during the fish experiments. Filipe Romão (PD/BD/52512/2014), Ana L. Quaresma (SFRH/BD/87843/2012) and Susana D. Amaral (SFRH/BD/110562/2015) were supported by PhD grants and Paulo Branco (SFRH/BPD/94686/2013) was funded by a post-doctoral grant, all, from Fundação para a Ciência e Tecnologia (FCT). CEF is a research unit funded by Fundação para a Ciência e a Tecnologia I.P. (FCT), Portugal (UID/AGR/00239/2013). We also thank the Institute for Nature Conservation and Forests (ICNF) which provided the necessary fishing and handling permits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe Romão.

Ethics declarations

Ethical approval

All relevant international, national, and/or institutional procedures for the care and use of animals were proceeded. Fish trials and sampling were supervised in agreement with national and international guidelines to maintain the welfare of the tested animals. Fish samplings were obtained from the Institute for Nature Conservation and Forests (ICNF). Fish experiments were carried out with strict agreement with the guidelines of the “protection of animal use for experimental and scientific work” of the Department for Health and Animal Protection (Direcção de Serviços de Saúde e Protecção Animal) that authorized animal experiments to be completed in the experimental facility, and fish to be held in the laboratory. All efforts were made to minimize stress and no fish were killed during the experiments.

Additional information

Handling editor: Ingeborg Palm Helland

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romão, F., Branco, P., Quaresma, A.L. et al. Effectiveness of a multi-slot vertical slot fishway versus a standard vertical slot fishway for potamodromous cyprinids. Hydrobiologia 816, 153–163 (2018). https://doi.org/10.1007/s10750-018-3580-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3580-5

Keywords

Navigation