Skip to main content

Advertisement

Log in

Spatial scales and the invasion paradox: a test using fish assemblages in a Neotropical floodplain

  • INVASIVE SPECIES II
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The invasion paradox refers to the existence of biotic resistance and biotic acceptance hypotheses. According to the biotic resistance hypothesis, the higher the richness present in a community, the more resistant it is against invaders. In contrast, the biotic acceptance hypothesis states that if the environment is suitable for a high richness of native species, it will be similarly suitable for establishment of non-native species. Previous studies on terrestrial plant communities considered the scale-dependent nature of native and non-native relationships: the relationship tends to be negative at small scales (biotic resistance) and positive at broader scales (biotic acceptance). We tested the hypothesized role of spatial scale on the relationship between non-native and native species richness using a spatially nested design and a long-term dataset (146 communities sampled during 13 years) of fish species richness from the upper Paraná River floodplain, Brazil. Contrary to expectations, non-native fish species richness was positively correlated with native species richness at all spatial scales. Mobility of vertebrates, mode of invasion, and environmental disturbance may affect the role of spatial scale in potentially mediating relative importance of biotic acceptance versus resistance. In this context, the present study provides a unique contribution towards resolving the invasion paradox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abell, R., M. L. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. C. Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. V. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. López, R. E. Reis, J. G. Lundberg, M. H. Sabaj Pérez & P. Petry, 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58: 403–414.

    Article  Google Scholar 

  • Agostinho, A. A., L. M. Bini, L. C. Gomes, H. F. Júlio Jr., C. S. Pavanelli & C. S. Agostinho, 2004a. Fish assemblages. In Thomaz, S. M., A. A. Agostinho & N. S. Hahn (eds), The Upper Paraná River and its floodplain: physical aspects, ecology and conservation. Backhuys Publishers, Leiden: 223–246.

    Google Scholar 

  • Agostinho, A. A., L. C. Gomes, S. Veríssimo & E. K. Okada, 2004b. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish Biology and Fisheries 14: 11–19.

    Article  Google Scholar 

  • Agostinho, A. A., L. C. Gomes & F. M. Pelicice, 2007. Ecologia e Manejo dos Recursos Pesqueiros em Reservatórios do Brasil. Eduem, Maringá.

    Google Scholar 

  • Agostinho, A. A., H. I. Suzuki, R. Fugi, D. C. Alves, L. H. Tonella & L. A. Espindola, 2015. Ecological and life history traits of Hemiodus orthonops in the invasion process: looking for clues at home. Hydrobiologia 746: 415.

    Article  Google Scholar 

  • Alofs, K. M. & N. L. Fowler, 2013. Loss of native herbaceous species due to woody plant encroachment facilitates the establishment of an invasive grass. Ecology 94: 751–760.

    Article  PubMed  Google Scholar 

  • Alves, G. H. Z., B. R. Figueiredo, G. I. Manetta, P. A. Sacramento, R. M. Tófoli & E. Benedito, 2017. Trophic segregation underlies the coexistence of two piranha species after the removal of a geographic barrier. Hydrobiologia 797: 57–68.

    Article  Google Scholar 

  • Blackburn, T. M., P. Pyšek, S. Bacher, J. T. Carlton, R. P. Duncan, V. Jarošík & D. M. Richardson, 2011. A proposed unified framework for biological invasions. Trends in Ecology & Evolution 26: 333–339.

    Article  Google Scholar 

  • Blanchet, S., F. Leprieur, O. Beauchard, J. Staes, T. Oberdorff & S. Brosse, 2009. Broad-scale determinants of non-native fish species richness are context-dependent. Proceedings of the Royal Society B: Biological Sciences 276: 2385–2394.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonetto, A. A., J. J. Neiff & D. H. Di Persia, 1986. The Paraná river system. The ecology of river systems. Springer, Berlin: 541–598.

    Chapter  Google Scholar 

  • Brooks, W. R., J. L. Lockwood & R. C. Jordan, 2013. Tropical paradox: a multi-scale analysis of the invasion paradox within Miami Rock Ridge tropical hardwood hammocks. Biological Invasions 15: 921–930.

    Article  Google Scholar 

  • Bruno, J. F., C. W. Kennedy, T. A. Rand & M. B. Grant, 2004. Landscape-scale patterns of biological invasions in shoreline plant communities. Oikos 107: 531–540.

    Article  Google Scholar 

  • Burke, M. J. W. & J. P. Grime, 1996. An experimental study of plant community invisibility. Ecology 77: 776–790.

    Article  Google Scholar 

  • Buss, L. W. & J. B. C. Jackson, 1979. Competitive networks: nontransitive competitive relationships in cryptic coral reef environments. The American Naturalist 113: 223–234.

    Article  Google Scholar 

  • Case, T. J., 1990. Invasion resistance arises in strongly interacting species-rich model competition communities. Proceedings of the National Academy of Sciences 87: 9610–9614.

    Article  CAS  Google Scholar 

  • Casimiro, A. C. R., D. A. Z. Garcia, A. D. A. Costa, J. R. Britton & M. L. Orsi, 2017. Impoundments facilitate a biological invasion: dispersal and establishment of non-native armoured catfish Loricariichthys platymetopon (Isbrückler & Nijssen, 1979) in a neotropical river. Limnologica-Ecology and Management of Inland Waters 62: 34–37.

    Article  Google Scholar 

  • Chew, M. K., 2011. Invasion biology: historical precedents. In Simberloff, D. & M. Rejmánek (eds), Encyclopedia of biological invasions. University of California Press, Berkeley: 369–375.

    Google Scholar 

  • Collins, S. L., F. Micheli & L. Hartt, 2000. A method to determine rates and patterns of variability in ecological communities. Oikos 91: 285–293.

    Article  Google Scholar 

  • Darling, E. S., S. J. Green, J. K. O’Leary & I. M. Côté, 2011. Indo-Pacific lionfish are larger and more abundant on invaded reefs: a comparison of Kenyan and Bahamian lionfish populations. Biological Invasions 13: 2045–2051.

    Article  Google Scholar 

  • Davies, K. F., P. Chesson, S. Harrison, B. D. Inouye, B. A. Melbourne & K. J. Rice, 2005. Spatial heterogeneity explains the scale dependence of the native-exotic diversity relationship. Ecology 86: 1602–1610.

    Article  Google Scholar 

  • Davis, M. A., 2009. Invasion biology. Oxford University Press, Oxford: 191.

    Google Scholar 

  • Ebeling, S. K., I. Hensen & H. Auge, 2008. The invasive shrub Buddleja davidii performs better in its introduced range. Diversity and Distributions 14: 225–233.

    Article  Google Scholar 

  • Elton, C. S., 1958. The ecology of invasions by animals and plants. Methuen, London.

    Book  Google Scholar 

  • Eschmeyer, W. N., 2014. CAS – California Academy of Sciences – Fishes Catalogue. Catalog of Fishes: Genera, Species, References. Electronic version

  • Fitzgerald, D. B., M. Tobler & K. O. Winemiller, 2016. From richer to poorer: successful invasion by freshwater fishes depends on species richness of donor and recipient basins. Global Change Biology 22: 2440–2450.

    Article  PubMed  Google Scholar 

  • Fridley, J. D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith & B. V. Holle, 2007. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88: 3–17.

    Article  PubMed  CAS  Google Scholar 

  • Froese, R. & D. Pauly, 2011. FishBase: World Wide Web electronic publication. Version (01/2010).

  • Graça, W. J. & C. S. Pavanelli, 2007. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes. Eduem, Maringá.

    Google Scholar 

  • Grime, J. P., 1973. Control of species density in herbaceous vegetation. Journal of Environmental Management 1: 151–167.

    Google Scholar 

  • Gurevitch, J. & D. K. Padilla, 2004. Are invasive species a major cause of extinctions? Trends in Ecology and Evolution 19: 470–474.

    Article  PubMed  Google Scholar 

  • Herben, T., B. Mandák, K. Bímová & Z. Münzbergová, 2004. Invasibility and species richness of a community: a neutral model and a survey of published data. Ecology 85: 3223–3233.

    Article  Google Scholar 

  • Henriksson, A., J. Yu, D. A. Wardle, J. Trygg & G. Englund, 2016a. Weighted species richness outperforms species richness as predictor of biotic resistance. Ecology 97: 262–271.

    Article  PubMed  Google Scholar 

  • Henriksson, A., D. A. Wardle, J. Trygg, S. Diehl & G. Englund, 2016b. Strong invaders are strong defenders-implications for the resistance of invaded communities. Ecology Letters 19: 487–494.

    Article  PubMed  Google Scholar 

  • Hoeinghaus, D. J., A. A. Agostinho, L. C. Gomes, F. M. Pelicice, E. K. Okada, J. D. Latini, E. A. L. Kashiwaqui & K. O. Winemiller, 2009. Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conservation Biology 23: 1222–1231.

    Article  PubMed  Google Scholar 

  • Huenneke, L. F., S. P. Hamburg, R. Koide, H. A. Mooney & P. M. Vitousek, 1990. Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology 71: 478–491.

    Article  Google Scholar 

  • Jeschke, J. M., L. G. Aparicio, S. Haider, T. Heger, C. J. Lortie, P. Pyšek & D. L. Strayer, 2012. NeoBiota 14: 1–20.

    Article  Google Scholar 

  • Julio Jr., H. F., C. Dei Tós, A. A. Agostinho & C. S. Pavanelli, 2009. A massive invasion of fish species after eliminating a natural barrier in the Upper rio Paraná basin. Neotropical Ichthyology 7: 709–718.

    Article  Google Scholar 

  • Kennedy, T. A., S. Naeem, K. M. Howe, J. M. Knops, D. Tilman & P. Reich, 2002. Biodiversity as a barrier to ecological invasion. Nature 417: 636–638.

    Article  PubMed  CAS  Google Scholar 

  • Knops, J. M. H., D. Tilman, N. M. Haddad, S. Naeem, C. E. Mitchell, J. Haarstad, M. E. Ritchie, K. M. Howe, P. B. Reich, E. Siemann & J. Groth, 1999. Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecological Letters 2: 286–293.

    Article  Google Scholar 

  • Kovalenko, K. E., S. M. Thomaz & D. M. Warfe, 2012. Habitat complexity: approaches and future directions. Hydrobiologia 685: 1–17.

    Article  Google Scholar 

  • Langeani, F., R. M. C. Castro, O. T. Oyakawa, A. O. Shibatta, C. S. Pavanelli & L. Casatti, 2007. Diversidade da ictiofauna do alto rio Paraná: composição atual e perspectivas futuras. Biota Neotropica 7: 181–197.

    Article  Google Scholar 

  • Leprieur, F., O. Beauchard, S. Blanchet, T. Oberdorff & S. Brosse, 2008. Fish invasions in the world’s river systems: when natural processes are blurred by human activities. PLoS Biology 6: 28.

    Article  CAS  Google Scholar 

  • Levine, J. M., 2000. Species diversity and biological invasions: relating local process to community pattern. Science 288: 852–854.

    Article  PubMed  CAS  Google Scholar 

  • Levine, J. M. & C. M. D’Antonio, 1999. Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87: 15–26.

    Article  Google Scholar 

  • Levine, J. M., P. B. Adler & S. G. Yelenik, 2004. A meta-analysis of biotic resistance to exotic plant invasions. Ecology Letters 7: 975–989.

    Article  Google Scholar 

  • Lima Junior, D. P., D. J. Hoeinghaus, L. M. Bini & A. A. Agostinho, 2015. Are non-native species larger in their invaded range? A test with tropical floodplain fish assemblages following inundation of a biogeographic barrier. Biological Invasions 17: 3263.

    Article  Google Scholar 

  • Lonsdale, W. M., 1999. Global patterns of plant invasions and the concept of invasibility. Ecology 80: 1522–1536.

    Article  Google Scholar 

  • Lowry, E., E. J. Rollinson, A. J. Laybourn, T. E. Scott, M. E. Aiello-Lammens, S. M. Gray & J. Gurevitch, 2013. Biological invasions: a field synopsis, systematic review, and database of the literature. Ecology and Evolution 3: 182–196.

    Article  PubMed Central  Google Scholar 

  • Mack, R. N., D. Simberloff, W. Mark Lonsdale, H. Evans, M. Clout & F. A. Bazzaz, 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10: 689–710.

    Article  Google Scholar 

  • Meyerson, L. A. & H. A. Mooney, 2007. Invasive alien species in an era of globalization. Frontiers in Ecology and the Environment 5: 199–208.

    Article  Google Scholar 

  • Naeem, S., J. M. H. Knops, D. Tilman, K. M. Howe, T. Kennedy & S. Gale, 2000. Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors. Oikos 91: 97–108.

    Article  Google Scholar 

  • Oliveira, A. G., H. I. Suzuki, L. C. Gomes & A. A. Agostinho, 2015. Interspecific variation in migratory fish recruitment in the Upper Paraná River: effects of the duration and timing of floods. Environmental Biology of Fishes 98: 1327–1337.

    Article  Google Scholar 

  • Orsi, M. L. & A. A. Agostinho, 1999. Introdução de espécies de peixes por escapes acidentais de tanques de cultivo em rios da Bacia do Rio Paraná, Brasil. Revista Brasileira de Zoologia 16: 557–560.

    Article  Google Scholar 

  • Ortega, J. C., H. F. Júlio Jr., L. C. Gomes & A. A. Agostinho, 2015. Fish farming as the main driver of fish introductions in Neotropical reservoirs. Hydrobiologia 746: 147–158.

    Article  Google Scholar 

  • Packer, J. G., L. A. Meyerson, D. M. Richardson, G. Brundu, W. J. Allen, G. P. Bhattarai, H. Brix, S. Canavan, S. Castiglione, A. Cicatelli & J. Čuda, 2017. Global networks for invasion science: benefits, challenges and guidelines. Biological Invasions 19: 1081–1096.

    Article  Google Scholar 

  • R Core Team, 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Ricciardi, A. & H. J. MacIsaac, 2011. Impacts of biological invasions on freshwater ecosystems. In Richardson, D. M. (ed.), Fifty years of invasion ecology: the 10 legacy of Charles Elton. Blackwell Publishing Ltd, Oxford: 211–224.

    Google Scholar 

  • Roberto, M. C., N. F. Santana & S. M. Thomaz, 2009. Limnology in the upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Brazilian Journal of Biology 69: 717–725.

    Article  CAS  Google Scholar 

  • Sagoff, M., 2009. Environmental harm: political not biological. Journal of Agricultural and Environmental Ethics 22: 81–88.

    Article  Google Scholar 

  • Sax, D. F., 2002. Native and naturalized plant diversity are positively correlated in scrub communities of California and Chile. Diversity and Distributions 8: 193–210.

    Article  Google Scholar 

  • Sax, D. F. & J. H. Brown, 2000. The paradox of invasion. Global Ecology and Biogeography 9: 363–371.

    Article  Google Scholar 

  • Shea, K. & P. Chesson, 2002. Community ecology theory as a framework for biological invasions. Trends in Ecology and Evolution 17: 170–176.

    Article  Google Scholar 

  • Simberloff, D. & J. R. Vitule, 2014. A call for an end to calls for the end of invasion biology. Oikos 123: 408–413.

    Article  Google Scholar 

  • Simberloff, D. & B. Von Holle, 1999. Positive interactions of nonindigenous species: invasional meltdown? Biological Invasions 1: 21–32.

    Article  Google Scholar 

  • Stachowicz, J. J., H. Fried, R. W. Osman & R. B. Whitlatch, 2002. Biodiversity, invasion resistance, and marine ecosystem function: reconciling pattern and process. Ecology 83: 2575–2590.

    Article  Google Scholar 

  • Stohlgren, T. J., D. T. Barnett & J. T. Kartesz, 2003. The rich get richer: patterns of plant invasions in the United States. Frontiers in Ecology and the Environment 1: 11–14.

    Article  Google Scholar 

  • Stohlgren, T. J., C. Jarnevich, G. W. Chong & P. H. Evangelista, 2006. Scale and plant invasions: a theory of biotic acceptance. Preslia 78: 405–426.

    Google Scholar 

  • Teixeira, M. C., L. M. Bini & S. M. Thomaz, 2017. Biotic resistance buffers the effects of nutrient enrichment on the success of a highly invasive aquatic plant. Freshwater Biology 62: 65–71.

    Article  Google Scholar 

  • Tilman, D., 1982. Resource competition and community structure. Princeton University Press, Princeton.

    Google Scholar 

  • Valéry, L., H. Fritz & J. C. Lefeuvre, 2013. Another call for the end of invasion biology. Oikos 122: 1143–1146.

    Article  Google Scholar 

  • Vasconcelos, L. P., D. C. Alves & L. C. Gomes, 2014. Spatial and temporal variations among fish with similar strategies: patterns of reproductive guilds in a floodplain. Hydrobiologia 726: 213–228.

    Article  CAS  Google Scholar 

  • Vellend, M., 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology 85: 183–206.

    Article  PubMed  Google Scholar 

  • Vitule, J. R. S., F. Skóra & V. Abilhoa, 2012. Homogenization of freshwater fish faunas after the elimination of a natural barrier by a dam in Neotropics. Diversity and Distributions 18: 111–120.

    Article  Google Scholar 

  • Von Holle, B. & D. Simberloff, 2005. Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86: 3212–3218.

    Article  Google Scholar 

  • Winemiller, K. O., P. B. McIntyre, L. Castello, E. Fluet-Chouinard, T. Giarrizzo, S. Nam, I. G. Baird, W. Darwall, N. K. Lujan, I. Harrison, M. L. J. Stiassny, R. A. M. Silvano, D. B. Fitzgerald, F. M. Pelicice, A. A. Agostinho, L. C. Gomes, J. S. Albert, M. Petrere Jr., C. Zarfl, M. Mulligan, J. P. Sullivan, C. Arantes, L. M. Sousa, A. A. Koning, D. J. Hoeinghaus, M. Sabaj, J. G. Lundberg, J. Armbruster, P. Petry, J. Zuanon, G. Torrente Vilara, J. Snoeks, C. Ou, C. S. Pavanelli, A. Akama, A. van Soesbergen & L. Sáenz, 2016. Balancing hydropower and biodiversity in the Amazon, Congo and Mekong – basin-scale planning is needed to minimize impacts in mega-diverse rivers. Science 351: 128–129.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Universidade Estadual de Maringá, Programa de Pós-Graduação em Ecologia de Ambientes Continentais (PEA) and Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia) for providing the staff who conducted field surveys. This work was financially supported by Coordenação de Aperfeiçoamento de Pessoal de Nivel Supeior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) that provided national and international scholarships for the first author, and funding for Brazilian Long Term Ecological Research program (PELD)—Site 6: the Upper Paraná River Floodplain. Comments from three external reviewers greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Alves dos Santos.

Additional information

Guest editors: John E. Havel, Sidinei M. Thomaz, Lee B. Kats, Katya E. Kovalenko & Luciano N. Santos / Aquatic Invasive Species II

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 246 kb)

Supplementary material 2 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, D.A., Hoeinghaus, D.J. & Gomes, L.C. Spatial scales and the invasion paradox: a test using fish assemblages in a Neotropical floodplain. Hydrobiologia 817, 121–131 (2018). https://doi.org/10.1007/s10750-018-3531-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3531-1

Keywords

Navigation