Skip to main content

Advertisement

Log in

Salinity shapes zooplankton communities and functional diversity and has complex effects on size structure in lakes

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Changes in zooplankton community structure and function were analyzed in 24 lakes covering a wide salinity gradient (from 0.5 to 115 g l−1) in a semiarid region in northwest China. We hypothesized that species richness (S), species diversity (H), functional diversity (FD), biomass, and size of zooplankton would decrease with increasing salinity. We found that S, H, and FD did decrease with increasing salinity, whereas zooplankton sizes, size range, and biomasses did not. In fact, the sizes of microcrustaceans were mainly regulated by the abundance of small fish. Besides the impoverishment of FD, the zooplankton functional groups also varied along the salinity gradient. A shift occurred from selective raptorial to more generalist microphagous rotifers, from selective to more generalist filter feeder cladocerans, and from dominance of microphagous herbivorous copepods to microphagous carnivores. Our study indicates that the ongoing salinization of lakes with climate warming will result in important changes in the zooplankton, affecting not only the structure but also the functioning of this community. A weakened top-down control by zooplankton on phytoplankton at moderate high salinities may be an indirect consequence, leading to a worsening of eutrophication symptoms. Loss of fish at high salinities may, however, counteract this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alekseev, V. R., 2002. Copepoda. In Fernando, C. H. (ed.), A Guide to Tropical Freshwater Zooplankton: Identification, Ecology and Impact on Fisheries. Backhuys Publishers, Leiden: 123–188.

    Google Scholar 

  • Alva-Martínez, A. F., R. Fernández, S. S. S. Sarma & S. Nandini, 2009. Effect of mixed toxic diets (Microcystis and Chlorella) on the rotifers Brachionus calyciflorus and Brachionus havanaensis cultured alone and together. Limnologica – Ecology and Management of Inland Waters 39: 302–305.

    Article  Google Scholar 

  • APHA, 1998. Standard Methods for the Examination of Water and Wastewater, 20th edn. APHA, Washington DC.

  • Arthaud, F., D. Vallod, J. Robin & G. Bornette, 2012. Eutrophication and drought disturbance shape functional diversity and life-history traits of aquatic plants in shallow lakes. Aquatic Sciences 74: 471–481.

    Article  Google Scholar 

  • Barnett, A. J., K. Finlay & B. E. Beisner, 2007. Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshwater Biology 52: 796–813.

    Article  Google Scholar 

  • Boix, D., S. Gascón, J. Sala, A. Badosa, S. Brucet, R. López-Flores, M. Martinoy, J. Gifre & X. D. Quintana, 2008. Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597: 53–69.

    Article  Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Węgleńska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.

    Google Scholar 

  • Brooks, J. L., S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Brucet, S., D. Boix, R. López-Flores, A. Badosa & X. D. Quintana, 2006. Size diversity and species diversity of zooplankton communities in fluctuant Mediterranean salt marshes. Estuarine, Coastal and Shelf Science 67: 424–432.

    Article  Google Scholar 

  • Brucet, S., D. Boix, S. Gascón, J. Sala, X. D. Quintana, A. Badosa, M. Søndergaard, T. L. Lauridsen & E. Jeppesen, 2009. Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography 32: 692–702.

    Article  Google Scholar 

  • Brucet, S., D. Boix, X. D. Quintana, E. Jensen, L. W. Nathansen, C. Trochine, M. Meerhoff, S. Gascón & E. Jeppesen, 2010. Factors influencing zooplankton size structure at contrasting temperatures in coastal shallow lakes: implications for effects of climate change. Limnology and Oceanography 55: 1697.

    Article  Google Scholar 

  • Brucet, S., D. Boix, L. W. Nathansen, X. D. Quintana, E. Jensen, D. Balayla, M. Meerhoff & E. Jeppesen, 2012. Effects of temperature, salinity and fish in structuring the macroinvertebrate community in shallow lakes: implications for effects of climate change. PloS one 7: e30877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York, NY.

    Google Scholar 

  • Chang, K. H., H. Doi, Y. Nishibe & S. I. Nakano, 2010. Feeding habits of omnivorous Asplanchna: comparison of diet composition among Asplanchna herricki, A. priodonta and A. girodi in pond ecosystems. Journal of Limnology 69: 209–216.

    Article  Google Scholar 

  • Daufresne, M., K. Lengfellner & U. Sommer, 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences 106: 12788–12793.

    Article  CAS  Google Scholar 

  • De Deckker, P., 1983. Notes on the ecology and distribution of non-marine ostracods in Australia. Hydrobiologia 106: 223–234.

    Article  Google Scholar 

  • Declerck, S., J. Vandekerkhove, L. Johansson, K. Muylaert, J. M. Conde-Porcuna, K. Van Der Gucht, C. Pérez-Martínez, T. Lauridsen, K. Schwenk, G. Zwart, W. Rommens, J. López-Ramos, E. Jeppesen, W. Vyverman, L. Brendonck & L. De Meester, 2005. Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86: 1905–1915.

    Article  Google Scholar 

  • Ding, N., W. Yang, Y. Zhou, I. González-Bergonzoni, J. Zhang, K. Chen, N. Vidal, E. Jeppesen & B. Wang, 2017. Different responses of functional traits and diversity of stream macroinvertebrates to environmental and spatial factors in the Xishuangbanna watershed of the upper Mekong River Basin, China. Science of the Total Environment 574: 288–299.

    Article  CAS  PubMed  Google Scholar 

  • Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.

    Article  PubMed  Google Scholar 

  • Flöder, S. & H. Hillebrand, 2012. Species traits and species diversity affect community stability in a multiple stressor framework. Aquatic Biology 17(3): 197–209.

    Article  Google Scholar 

  • Gallego, I., T. A. Davidson, E. Jeppesen, C. Pérez-Martínez, P. Sánchez-Castillo, M. Juan, F. Fuentes-Rodríguez, D. León, P. Peñalver, J. Toja & J. J. Casas, 2012. Taxonomic or ecological approaches? Searching for phytoplankton surrogates in the determination of richness and assemblage composition in ponds. Ecological Indicators 18: 575–585.

    Article  Google Scholar 

  • Gao, Q., Z. Xu & P. Zhuang, 2008. The relation between distribution of zooplankton and salinity in the Changjiang Estuary. Chinese Journal of Oceanology and Limnology 26: 178–185.

    Article  Google Scholar 

  • Grime, J. P., 1973. Competitive exclusion in herbaceous vegetation. Nature 242: 344–347.

    Article  Google Scholar 

  • Hammer, U. T., 1986. Saline Lake Ecosystems of the World. Junk, Dordrecht.

    Google Scholar 

  • Harrison, T. D. & A. K. Whitfield, 2006. Temperature and salinity as primary determinants influencing the biogeography of fishes in South African estuaries. Estuarine, Coastal and Shelf Science 66: 335–345.

    Article  Google Scholar 

  • Heino, J., 2008. Patterns of functional biodiversity and function-environment relationships in lake littoral macroinvertebrates. Limnology and Oceanography 53: 1446–1455.

    Article  Google Scholar 

  • Heino, J., D. Schmera & T. Erős, 2013. A macroecological perspective of trait patterns in stream communities. Freshwater Biology 58: 1539–1555.

    Article  Google Scholar 

  • Helenius, L. K., E. Leskinen, H. Lehtonen & L. Nurminen, 2016. Spatial patterns of littoral zooplankton assemblages along a salinity gradient in a brackish sea: a functional diversity perspective. Estuarine, Coastal and Shelf Science. https://doi.org/10.1016/j.ecss.2016.08.031.

  • Hochberg, R. & O. A. Gurbuz, 2008. Comparative morphology of the somatic musculature in species of Hexarthra and Polyarthra (Rotifera, Monogononta): its function in appendage movement and escape behavior. Zoologischer Anzeiger-A Journal of Comparative Zoology 247: 233–248.

    Article  Google Scholar 

  • Jensen, E., S. Brucet, M. Meerhoff, L. Nathansen & E. Jeppesen, 2010. Community structure and diel migration of zooplankton in shallow brackish lakes: role of salinity and predators. Hydrobiologia 646: 215–229.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard, E. Kanstrup, B. Petersen, R. B. Eriksen, M. Hammershøj, E. Mortensen, J. P. Jensen & A. Have, 1994. Does the impact of nutrients on the biological structure and function of brackish and fresh-water lakes differ? Hydrobiologia 275: 15–30.

    Article  Google Scholar 

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, E. Mortensen & O. Sortkjær, 1996. Fish-induced changes in zooplankton grazing on phytoplankton and bacterioplankton: a long-term study in shallow hypertrophic Lake Søbygaard. Journal of Plankton Research 18: 1605–1625.

    Article  Google Scholar 

  • Jeppesen, E., T. L. Lauridsen, S. F. Mitchell, K. Christoffersen & C. W. Burns, 2000. Trophic structure in the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. Journal of Plankton Research 22: 951–968.

    Article  Google Scholar 

  • Jeppesen, E., M. Søndergaard, A. R. Pedersen, K. Jürgens, A. Strzelczak, T. L. Lauridsen & L. S. Johansson, 2007. Salinity induced regime shift in shallow brackish lagoons. Ecosystems 10: 47–57.

    Article  CAS  Google Scholar 

  • Jeppesen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, T. Nõges, P. Nõges, J. L. Attayde, T. Zohary, J. Coppens, T. Bucak, R. Fernandes Menezes, F. R. Sousa Freitas, M. Kernan, M. Søndergaard & M. Beklioğlu, 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750: 201–227.

    Article  Google Scholar 

  • Jin, X. C. & Q. Y. Tu, 1990. Survey Specification for Lake Eutrophication. Environmental Science Press, Beijing.

    Google Scholar 

  • Kalff, J., 2002. Limnology: Inland Water Ecosystems.

  • Kořínek, V., 1981. Diaphanosoma birgei n. sp. (Crustacea, Cladocera). A new species from America and its widely distributed subspecies Diaphanosoma birgei ssp. lacustris n. ssp. Canadian Journal of Zoology 59: 1115–1121.

    Article  Google Scholar 

  • Korínek, V., 2002. Cladocera. In Fernando, C. H. (ed.), A Guide to Tropical Freshwater Zooplankton. Leiden, Backhuys Publishers, pp. 69–122.

    Google Scholar 

  • Korovchinsky, N. M., 1992. Sididae & Holopediidae (Crustacea: Daphniiformes). SPB Academic Publishing, The Hague.

    Google Scholar 

  • Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas. Gebr. Borntraeger, Berlin, Stuttgart: 673 pp. 234 plates.

  • Kruk, C., V. I. M. Huszar, E. T. H. Peeters, S. Bonilla, L. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Article  Google Scholar 

  • Lepš, J., & P. Šmilauer, 1998. Multivariate Analysis of Ecological Data. Faculty of Biological Sciences, University of South Bohemia Ceské Budejovice, Czech Republic: 110 pp.

  • Litchman, E., M. D. Ohman & T. Kiørboe, 2013. Trait-based approaches to zooplankton communities. Journal of Plankton Research 35: 473–484.

    Article  Google Scholar 

  • Longhi, M. L. & B. E. Beisner, 2010. Patterns in taxonomic and functional diversity of lake phytoplankton. Freshwater Biology 55: 1349–1366.

    Article  CAS  Google Scholar 

  • Mano, H. & Y. Tanaka, 2016. Mechanisms of compensatory dynamics in zooplankton and maintenance of food chain efficiency under toxicant stress. Ecotoxicology 25: 399–411.

    Article  CAS  PubMed  Google Scholar 

  • Mason, N. W., F. Bello, D. Mouillot, S. Pavoine & S. Dray, 2013. A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science 24: 794–806.

    Article  Google Scholar 

  • McGill, B. J., B. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178–185.

    Article  Google Scholar 

  • Moisander, P. H., E. McClinton & H. W. Paerl, 2002. Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microbial Ecology 43: 432–442.

    Article  CAS  PubMed  Google Scholar 

  • Moss, B. R., 2009. Ecology of Fresh Waters: Man and Medium, Past to Future. Wiley.

  • Moss, B. & R. T. Leah, 1982. Changes in the ecosystem of a guanotrophic and brackish shallow lake in eastern England: potential problems in its restoration. Internationale Revue der Gesamten Hydrobiologie 67: 625–659.

    CAS  Google Scholar 

  • Nielsen, K. J., 2003. Nutrient loading and consumers: agents of change in open-coast macrophyte assemblages. Proceedings of the National Academy of Sciences USA 100: 7660–7665.

    Article  CAS  Google Scholar 

  • Obertegger, U. & G. Flaim, 2015. Community assembly of rotifers based on morphological traits. Hydrobiologia 753: 31–45.

    Article  Google Scholar 

  • Obertegger, U. & M. Manca, 2011. Response of rotifer functional groups to changing trophic state and crustacean community. Journal of Limnology 70: 231–238.

    Article  Google Scholar 

  • Obertegger, U., H. A. Smith, G. Flaim & R. L. Wallace, 2011. Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia 662: 157–162.

    Article  Google Scholar 

  • Ojaveer, H., L. A. Kuhns, R. P. Barbiero & M. L. Tuchman, 2001. Distribution and population characteristics of Cercopagis pengoi in Lake Ontario. Journal of Great Lakes Research 27: 10–18.

    Article  Google Scholar 

  • Paerl, H. W. & J. Huisman, 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1: 27–37.

    Article  CAS  PubMed  Google Scholar 

  • Paturej, E. & A. Gutkowska, 2015. The effect of salinity levels on the structure of zooplankton communities. Archives of Biological Sciences 67: 483–492.

    Article  Google Scholar 

  • Pennak, R., 1991. Fresh-Water Invertebrates of the United States. Wiley Interscience, USA: 628.

    Google Scholar 

  • Quintana, X. D., S. Brucet, D. Boix, R. López-Flores, S. Gascón, A. Badosa, J. Sala, R. Moreno-Amich & J. J. Egozcue, 2008. A non-parametric method for the measurement of size diversity, with emphasis on data standardisation. Limnology and Oceanography: Methods 6: 75–86.

    Article  Google Scholar 

  • Quintana, X. D., M. Arim, A. Badosa, J. M. Blanco, D. Boix, S. Brucet, J. Compte, J. J. Egozcue, E. de Eyto, U. Gaedke, S. Gascón, L. Gil de Solá, K. Irvine, E. Jeppesen, T. L. Lauridsen, R. López-Flores, T. Mehner, S. Romo & M. Søndergaard, 2015. Predation and competition effects on the size diversity of aquatic communities. Aquatic Sciences 77: 45–57.

    Article  Google Scholar 

  • R Development Core Team, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Rodríguez-Gallego, L., V. Sabaj, S. Masciadri, C. Kruk, R. Arocena & D. Conde, 2015. Salinity as a major driver for submerged aquatic vegetation in coastal lagoons: a multi-year analysis in the subtropical Laguna de Rocha. Estuaries and Coasts 38: 451–465.

    Article  Google Scholar 

  • Ruesink, J. L. & D. S. Srivastava, 2001. Numerical and per capita responses to species loss: mechanisms maintaining ecosystem function in a community of stream insect detritivores. Oikos 93: 221–234.

    Article  Google Scholar 

  • Sarma, S. S. S., S. Nandini, J. Morales-Ventura, I. Delgado-Martínez & L. González-Valverde, 2006. Effects of NaCl salinity on the population dynamics of freshwater zooplankton (rotifers and cladocerans). Aquatic Ecology 40: 349–360.

    Article  CAS  Google Scholar 

  • Schallenberg, M., C. J. Hall & C. W. Burns, 2003. Consequences of climate-induced salinity increases on zooplankton abundance and diversity in coastal lakes. Marine Ecology Progress Series 251: 181–189.

    Article  Google Scholar 

  • Schindler, D. W., 1990. Experimental perturbations of whole lakes as tests of hypotheses concerning ecosystem structure and function. Oikos 57: 25–41.

    Article  Google Scholar 

  • Schmera, D., T. Erős & J. Podani, 2009. A measure for assessing functional diversity in ecological communities. Aquatic Ecology 43: 157–167.

    Article  Google Scholar 

  • Shannon, C. E. & W. Weaver, 1964. The Mathematical Theory of Communication. University Illinois Press, Urbana, IL.

    Google Scholar 

  • Sheridan, J. A. & D. Bickford, 2011. Shrinking body size as an ecological response to climate change. Nature Climate Change 1: 401–406.

    Article  Google Scholar 

  • Tavsanoglu, U. N., R. Maleki & N. Akbulut, 2015. Effects of salinity on the zooplankton community structure in two marine lakes and one freshwater lake in the Konya closed basin, Turkey. Ekoloji 24: 25–32.

    CAS  Google Scholar 

  • Ter Braak, C. J., 1994. Canonical community ordination. Part I: basic theory and linear methods. Ecoscience 1: 127–140.

    Article  Google Scholar 

  • Ter Braak, C. J., & P. Smilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination, version 4.5. www.canoco.com.

  • Tolomeev, A. P., N. N. Sushchik, R. D. Gulati, O. N. Makhutova, G. S. Kalacheva & T. A. Zotina, 2010. Feeding spectra of Arctodiaptomus salinus (Calanoida, Copepoda) using fatty acid trophic markers in seston food in two salt lakes in South Siberia (Khakasia, Russia). Aquatic Ecology 44: 513–530.

    Article  CAS  Google Scholar 

  • Tonk, L., K. Bosch, P. M. Visser & J. Huisman, 2007. Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa. Aquatic Microbial Ecology 46: 117–123.

    Article  Google Scholar 

  • Tõnno, I., H. Agasild, T. Kõiv, R. Freiberg, P. Nõges & T. Nõges, 2016. Algal diet of small-bodied crustacean zooplankton in a cyanobacteria-dominated eutrophic lake. PloS one 11: e0154526.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toruan, R. L., 2012. Zooplankton community emerging from fresh and saline wetlands. Ecohydrology & Hydrobiology 12: 53–63.

    Article  Google Scholar 

  • USEPA, 2002. National primary drinking water regulations. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Vandermeer, J., M. van Noordwijk, J. Anderson, C. Ong & I. Perfecto, 1998. Global change and multi-species agroecosystems: concepts and issues. Agriculture, Ecosystems & Environment 67: 1–22.

    Article  Google Scholar 

  • Vaughn, C. C., 2010. Biodiversity losses and ecosystem function in freshwaters: emerging conclusions and research directions. BioScience 60: 25–35.

    Article  Google Scholar 

  • Viayeh, R. M. & M. Špoljar, 2012. Structure of rotifer assemblages in shallow waterbodies of semi-arid northwest Iran differing in salinity and vegetation cover. Hydrobiologia 686: 73–89.

    Article  Google Scholar 

  • Vogt, M., T. Hashioka, M. R. Payne, E. T. Buitenhuis, C. L. Quéré, S. Alvain, M. N. Aita, L. Bopp, S. C. Doney, T. Hirata, I. Lima, S. Sailley & Y. Yamanaka, 2013. The distribution, dominance patterns and ecological niches of plankton functional types in Dynamic Green Ocean Models and satellite estimates. Biogeosciences Discussions 10: 17193–17247.

    Article  Google Scholar 

  • Waterkeyn, A., P. Grillas, B. Vanschoenwinkel & L. Brendonck, 2008. Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biology 53: 1808–1822.

    Article  CAS  Google Scholar 

  • Whittaker, R. H., 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.

    Article  Google Scholar 

  • Williams, W. D., 1998. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 381: 191–201.

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank the technical staff at the Department of Bioscience in Silkeborg and NIGLAS in Nanjing for help with the study in the field and the laboratory, Drs. Juan Paggi and Susana José de Paggi for help with zooplankton species identification, A. M. Poulsen for editorial assistance, and Mariana Meerhoff for her kind encouragement and valuable comments on an early version of the manuscript. The staff at the Agriculture Department of Fuhai is gratefully acknowledged for fieldwork assistance. This research was funded by the Sino-Danish Centre for Education and Research (SDC), Aarhus University (AU). J. L. Y. was supported by the National Natural Science Foundation of China (31400400). F. T. M. was supported by SNI-ANII (Uruguay). E. J. was supported by the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378) and the AU Centre for Water Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Florencia Gutierrez.

Additional information

Handling editor: Karl E. Havens

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 462 kb)

Supplementary material 2 (DOCX 657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutierrez, M.F., Tavşanoğlu, Ü.N., Vidal, N. et al. Salinity shapes zooplankton communities and functional diversity and has complex effects on size structure in lakes. Hydrobiologia 813, 237–255 (2018). https://doi.org/10.1007/s10750-018-3529-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3529-8

Keywords

Navigation