Skip to main content
Log in

Water transparency affects the survival of the medusa stage of the invasive freshwater jellyfish Craspedacusta sowerbii

  • INVASIVE SPECIES II
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Craspedacusta sowerbii is a global invader of inland waters, but little is known on what environmental factors control its colonization success. We hypothesized that water transparency and thus, exposure to UV radiation are relevant for the colonization success of this relatively transparent invasive hydroid. Here we used field and laboratory experiments to assess the effect of natural solar radiation and artificial UV radiation on the medusa stage of C. sowerbii across natural and simulated water transparency gradients in three Chilean Patagonian lakes. Short-term exposure of the jellyfish to artificial UV radiation under low Dissolved Organic Carbon (DOC) treatments induced mortality and caused sublethal effects such as swimming anomalies and production of reactive oxygen species. Outdoor exposure of jellyfish to full solar radiation in the most transparent water (Lake Ranco; DOC = 0.6 mg l−1) resulted in almost complete mortality. However, higher DOC contents provided partial or almost complete protection against the adverse impact of UV radiation. Overall, our findings provide evidence of the role of underwater light conditions in the underlying mechanisms that may favor the invasion of this gelatinous alien species in inland waters. The results imply that under the current “brownification” of lakes, an increase in water color might provide more favorable conditions for the invasion process of this hydroid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA, 2005. Standard methods for the examination of water and wastewater. American Water Works Association (AWWA), Water Environment Federation (AEF), Washington, DC.

  • Bogdanis, G. C., 2012. Effects of physical activity and inactivity on muscle fatigue. Frontiers in Physiology. https://doi.org/10.3389/fphys.2012.00142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosch, T. C. G., M. Adamska, R. Augustin, T. Domazet-Loso, S. Foret, S. Fraune & D. J. Miller, 2014. How do environmental factors influence life cycles and development? An experimental framework for early-diverging metazoans. BioEssays 36(12): 1185–1194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brotz, L., W. W. Cheung, K. Kleisner, E. Pakhomov & D. Pauly, 2012. Increasing jellyfish populations: trends in large marine ecosystems. Hydrobiologia 690(1): 3–20.

    Article  Google Scholar 

  • Caputo, L. A., K. V. Riquelme, D. Y. Osman & R. A. Fuentes, 2013. A new record of the non indigenous freshwater jellyfish Craspedacusta sowerbii Lankester, 1880 (Cnidaria) in Northern Patagonia (40 S, Chile). BioInvasions Records 2(4): 263–270.

    Article  Google Scholar 

  • Collén, J. & I. R. Davison, 1997. In vivo measurement of active oxygen production in the brown alga Fucus Evanescens using 2′, 7′-Dichlorohydrofluorescein diacetate. Journal of Phycology 33(4): 643–648.

    Article  Google Scholar 

  • Connelly, S. J., K. Walling, S. A. Wilbert, D. M. Catlin, C. E. Monaghan, S. Hlynchuk, J. A. Cody, et al., 2015. UV-stressed Daphnia pulex increase fitness through uptake of vitamin D3. PLoS ONE 10(7): e0131847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooke, S. L., C. E. Williamson & J. E. Saros, 2006. How do temperature, dissolved organic matter and nutrients influence the response of Leptodiaptomus ashlandi to UV radiation in a subalpine lake? Freshwater Biology 51(10): 1827–1837.

    Article  CAS  Google Scholar 

  • Costello, J. H., S. P. Colin & J. O. Dabiri, 2008. Medusan morphospace: phylogenetic constraints, biomechanical solutions, and ecological consequences. Invertebrate Biology 127(3): 265–290.

    Article  Google Scholar 

  • De Vries, D., 1992. The freshwater jellyfish Craspedacusta sowerbyi: a summary of its life history, ecology and distribution. Journal Freshwater Ecology 7: 7–16.

    Article  Google Scholar 

  • Dodson, S., 1990. Predicting diel vertical migration of zooplankton. Limnology and Oceanography 35(5): 1195–1200.

    Article  Google Scholar 

  • Duarte, C. M., K. A. Pitt, C. H. Lucas, J. E. Purcell, S.-I. Uye, K. Robinson, L. Brotz, M. B. Decker, K. R. Sutherland & A. Malej, 2013. Is global ocean sprawl a cause of jellyfish blooms? Frontiers in Ecology and the Environment 11(2): 91–97.

    Article  Google Scholar 

  • Duggan, I. C. & K. R. Eastwood, 2012. Detection and distribution of Craspedacusta sowerbii: observations of medusae are not enough. Aquatic Invasions 7(2): 271–275.

    Article  Google Scholar 

  • Dumont, H. J., 1994. The distribution and ecology of the fresh-and brackish-water medusae of the world. Hydrobiologia 272(1–3): 1–12.

    Article  Google Scholar 

  • Dupont, N., T. Klevjer, S. Kaartvedt & D. Aksnes, 2009. Diel vertical migration of the deep-water jellyfish Periphylla periphylla simulated as individual responses to absolute light intensity. Limnology and Oceanography 54(5): 1765.

    Article  Google Scholar 

  • Folino-Rorem, N. C., M. Reid & T. Peard, 2016. Culturing the freshwater hydromedusa, Craspedacusta sowerbii under controlled laboratory conditions. Invertebrate Reproduction & Development 60(1): 17–27.

    Article  Google Scholar 

  • Freeman, K. S., G. A. Lewbart, W. P. Robarge, C. A. Harms, J. M. Law & M. K. Stoskopf, 2009. Characterization of eversion syndrome in captive Scyphomedusa jellyfish. American Journal of Veterinary Research 70(9): 1087–1093.

    Article  PubMed  CAS  Google Scholar 

  • Fritz, G. B., R. O. Schill, M. Pfannkuchen & F. Bruemmer, 2007. The freshwater jellyfish Craspedacusta sowerbii Lankester, 1880 (Limnomedusa: Olindiidae) in Germany, with a brief note on its nomenclature. Journal of Limnology 66(1): 54–59.

    Article  Google Scholar 

  • Fuentes, R., 2015. Craspedacusta sowerbii, Lankester 1880 (Cnidaria, Hydrozoa) en lagunas del centro sur de Chile (38°–40°s): contexto ambiental y caracterización genética de las poblaciones. Bachelor Thesis, Escuela de Biologia Marina, Universidad Austral de Chile.

  • Helbling, E. W., V. E. Villafañe & E. S. Barbieri, 2001. Sensitivity of winter phytoplankton communities from Andean lakes to artificial ultraviolet-B radiation. Revista Chilena de Historia Natural 74: 273–282.

    Article  Google Scholar 

  • Hessen, D. O. & P. J. Færøvig, 2001. The photoprotective role of humus-DOC for Selenastrum and Daphnia Responses of Plants to UV-B Radiation. Springer: 261–273.

  • Holstein, T. W. & V. Laudet, 2014. Life-history evolution: at the origins of metamorphosis. Current Biology 24(4): 159–161.

    Article  CAS  Google Scholar 

  • Huovinen, P. S. & C. R. Goldman, 2000. Inhibition of phytoplankton production by UV-B radiation in clear subalpine Lake Tahoe, California-Nevada. Proceedings-International Association of Theoretical and Applied Limnology 27(1): 157–160.

    CAS  Google Scholar 

  • Huovinen, P., H. Penttilä & M. Soimasuo, 2000. Penetration of UV radiation into Finnish lakes with different characteristics. International Journal of Circumpolar Health 59(1): 15–21.

    PubMed  CAS  Google Scholar 

  • Huovinen, P., H. Penttilä & M. Soimasuo, 2003. Spectral attenuation of solar ultraviolet radiation in humic lakes in Central Finland. Chemosphere 51(3): 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Huovinen, P., I. Gómez & C. Lovengreen, 2006. A five-year study of solar ultraviolet radiation in southern Chile (39°S): potential impact on physiology of coastal marine algae? Photochemistry and Photobiology 82(2): 515–522.

    Article  PubMed  CAS  Google Scholar 

  • Kazerouni, E. G., C. E. Franklin & F. Seebacher, 2016. UV-B exposure reduces locomotor performance by impairing muscle function but not mitochondrial ATP production. Journal of Experimental Biology 219(1): 96–102.

    Article  Google Scholar 

  • Kessler, K., R. S. Lockwood, C. E. Williamson & J. E. Saros, 2008. Vertical distribution of zooplankton in subalpine and alpine lakes: ultraviolet radiation, fish predation, and the transparency-gradient hypothesis. Limnology and Oceanography 53(6): 2374–2382.

    Article  Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Kirk, J. T. O., 2011. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Kramp, P. L., 1961. Synopsis of the medusae of the world. Journal of the Marine Biological Association of the United Kingdom 40: 7–382.

    Article  Google Scholar 

  • Leclère, L., R. L. Copley, T. Momose & E. Houliston, 2016. Hydrozoan insights in animal development and evolution. Current Opinion in Genetics & Development 39: 157–167.

    Article  CAS  Google Scholar 

  • Lewis, C., M. Migita, H. Hashimoto & A. G. Collins, 2012. On the occurrence of freshwater jellyfish in Japan 1928–2011: eighty-three years of records of Mamizu kurage (Limnomedusae, Olindiidae). Proceedings of the Biological Society of Washington 125(2): 165–179.

    Article  Google Scholar 

  • Lundberg, S., J.-E. Svensson & A. Petrusek, 2005. Craspedacusta invasions in Sweden. Internationale Vereinigung fur Theoretische und Angewandte Limnologie Verhandlungen 29(2): 899–902.

    Google Scholar 

  • Madronich, S., 1993. Tropospheric photochemistry and its response to UV changes. In Chanin, M. L. (ed.), The Role of the Stratosphere in Global Change. Springer, Amsterdam: 437–461.

    Chapter  Google Scholar 

  • Marinone, M. C., S. M. Marque, D. A. Suárez, M. C. Diéguez, P. Pérez, P. Ríos, D. Soto & H. E. Zagarese, 2006. UV radiation as a potential driving force for zooplankton community structure in Patagonian lakes. Photochemistry and Photobiology 82(4): 962–971.

    Article  PubMed  CAS  Google Scholar 

  • Minchin, D., J. M. Caffrey, D. Haberlin, D. Germaine, C. Walsh, R. Boelens & T. K. Doyle, 2016. First observations of the freshwater jellyfish Craspedacusta sowerbii Lankester, 1880 in Ireland coincides with unusually high water temperatures. BioInvasions Records 5(2): 67–74.

    Article  Google Scholar 

  • Moreno-Leon, M. A. & A. Ortega-Rubio, 2009. First record of Craspedacusta sowerbyi Lankester, 1880 (Cnidaria: Limnomedusae: Olindiidae) in Mexico (Adolfo Lopez Mateos reservoir), with notes on their feeding habits and limnological dates. Biological Invasions 11(8): 1827–1834.

    Article  Google Scholar 

  • Morris, D. P., H. Zagarese, C. E. Williamson, E. G. Balseiro, B. R. Hargreaves, B. Modenutti, R. Moeller & C. Queimalinos, 1995. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnology and Oceanography 40(8): 1381–1391.

    Article  CAS  Google Scholar 

  • Oscoz, J., P. Tomds & C. Duron, 2010. Review and new records of non-indigenous freshwater invertebrates in the Ebro River basin (Northeast Spain). Aquatic Invasions 5(3): 263–284.

    Article  Google Scholar 

  • Pérez-Bote, J. L., A. Muñoz, R. Morán, R. Roso & A. J. Romero, 2006. First record of Craspedacusta sowerbyi Lankester, 1880 (Cnidaria: Limnomedusae: Olindiidae) in the Proserpina Reservoir (Extremadura, SW Spain) with notes on their feeding habits. Belgian Journal of Zoology 136(2): 163.

    Google Scholar 

  • Purcell, J. E., 2005. Climate effects on formation of jellyfish and ctenophore blooms: a review. Journal of the Marine Biological Association of the United Kingdom 85(3): 461–476.

    Article  Google Scholar 

  • Rautio, M. & A. Korhola, 2002. UV-induced pigmentation in subarctic Daphnia. Limnology and Oceanography 47(1): 295–299.

    Article  CAS  Google Scholar 

  • Reynolds, J. M., B. U. Bruns, W. K. Fitt & G. W. Schmidt, 2008. Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proceedings of the National Academy of Sciences, USA 105(36): 13674–13678.

    Article  Google Scholar 

  • Ringuelet, R., 1950. La medusa de agua dulce Craspedacusta sowerbii Lank. en La Argentina. Universidad Nacional de la Plata, Facultad de Ciencias Naturales.

  • Rose, K. C., C. E. Williamson, J. E. Saros, R. Sommaruga & J. M. Fischer, 2009. Differences in UV transparency and thermal structure between alpine and subalpine lakes: implications for organisms. Photochemical & Photobiological Sciences 8(9): 1244–1256.

    Article  CAS  Google Scholar 

  • Salonen, K., P. Högmander, V. Langenberg, H. Mölsä, J. Sarvala, A. Tarvainen & M. Tiirola, 2012. Limnocnida tanganyicae medusae (Cnidaria: Hydrozoa): a semiautonomous microcosm in the food web of Lake Tanganyika. Hydrobiologia 690(1): 97–112.

    Article  CAS  Google Scholar 

  • Scully, N. & D. Lean, 1994. The attenuation of ultraviolet radiation in temperate lakes. Ergebnisse der Limnologie 43: 135.

    Google Scholar 

  • Schuyler, Q. & B. K. Sullivan, 1997. Light responses and die1 migration of the scyphomedusa Chrysaora quinquecirrha in mesocosms. Journal of Plankton Research 19(10): 1417–1428.

    Article  Google Scholar 

  • Shiu, C. T. & T. M. Lee, 2005. Ultraviolet-B-induced oxidative stress and responses of the ascorbate–glutathione cycle in a marine macroalga Ulva fasciata. Journal of Experimental Botany 56(421): 2851–2865.

    Article  PubMed  CAS  Google Scholar 

  • Sommaruga, R., 2001. The role of solar UV radiation in the ecology of alpine lakes. Journal of Photochemistry and Photobiology B: Biology 62(1): 35–42.

    Article  CAS  Google Scholar 

  • Sommaruga, R. & F. Garcia-Pichel, 1999. UV-absorbing mycosporine-like compounds in planktonic and benthic organisms from a high-mountain lake. Archiv für Hydrobiologie 144(3): 255–269.

    Article  CAS  Google Scholar 

  • Soto, D. & L. R. Zuñiga, 1991. Zooplankton assemblages of Chilean temperate lakes: a comparison with North American counterparts. Revista Chilena de Historia Natural 64: 569–581.

    Google Scholar 

  • Soto, D. & H. Campos, 1995. Los lagos oligotróficos del bosque templado húmedo del sur de Chile. In Armesto, J, Khalin, M & Villagrán, M (eds), Ecología de los bosques nativos de Chile: 134–148.

  • Spadinger, R. & G. Maier, 1999. Prey selection and diel feeding of the freshwater jellyfish. Craspedacusta sowerbyi. Freshwater Biology 41(3): 567–573.

    Article  Google Scholar 

  • Stefani, F., B. Leoni, A. Marieni & L. Garibaldi, 2010. A new record of Craspedacusta sowerbii, Lankester 1880 (Cnidaria, Limnomedusae) in Northern Italy. Journal of Limnology 69(1): 189–192.

    Article  Google Scholar 

  • Steinhart, G. S., G. E. Likens & D. Soto, 2002. Physiological indicators of nutrient deficiency in phytoplankton in southern Chilean lakes. Hydrobiologia 489(1–3): 21–27.

    Article  CAS  Google Scholar 

  • Tartarotti, B. & R. Sommaruga, 2002. The effect of different methanol concentrations and temperatures on the extraction of mycosporine-like amino acids (MAAs) in algae and zooplankton. Archiv für Hydrobiologie 154(4): 691–703.

    Article  CAS  Google Scholar 

  • Vincent, W. F., R. Rae, I. Laurion, C. Howard-Williams & J. C. Priscu, 1998. Transparency of Antarctic ice-covered lakes to solar UV radiation. Limnology and Oceanography 43(4): 618–624.

    Article  Google Scholar 

  • Williamson, C. E., R. S. Stemberger, D. P. Morris, T. M. Frost & S. G. Paulsen, 1996. Ultraviolet radiation in North American lakes: attenuation estimates from DOC measurements and implications for plankton communities. Limnology and Oceanography 41(5): 1024–1034.

    Article  CAS  Google Scholar 

  • Woelfl, S., 2007. The distribution of large mixotrophic ciliates (Stentor) in deep North Patagonian lakes (Chile): first results. Limnologica-Ecology and Management of Inland Waters 37(1): 28–36.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Fondecyt 1161129 (to IG and PH) and DID-UACh S-2016-37 (to LC). The study was carried in the context of the FONDAP IDEAL 15150003 (IG and PH). Participation of RS was possible due to Specific Agreement between the Aquatic Photobiology of the University of Innsbruck, Austria and the Plankton Ecology Laboratory of the Universidad Austral de Chile (UACh), Chile. We thank Dr. L.N. Santos and two anonymous reviewers for their constructive comments, which helped us to improve the manuscript. The assistance provided by A. Hernández, G. González, and D. Osman in the fieldwork campaigns is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Caputo.

Additional information

Guest editors: John E. Havel, Sidinei M. Thomaz, Lee B. Kats, Katya E. Kovalenko & Luciano N. Santos / Aquatic Invasive Species II

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caputo, L., Huovinen, P., Sommaruga, R. et al. Water transparency affects the survival of the medusa stage of the invasive freshwater jellyfish Craspedacusta sowerbii. Hydrobiologia 817, 179–191 (2018). https://doi.org/10.1007/s10750-018-3520-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3520-4

Keywords

Navigation