Skip to main content
Log in

Predicting where species could go: climate is more important than dispersal for explaining the distribution of a South American turtle

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Species distributions are determined by abiotic and biotic factors as well as dispersal, but most studies focus exclusively on abiotic (mainly climatic) components. In this study, we evaluated the influence of dispersal as a predictor for species distribution models (SDMs) using the turtle Mesoclemmys tuberculata as an example. We specifically tested whether dispersal is a better predictor of the distribution of M. tuberculata than climatic predictors. We sampled occurrence records of M. tuberculata to build SDMs and used the distance of each cell to the nearest river (river distance) as a predictor for dispersal. In addition, three bioclimatic predictors that quantify temperature and precipitation were used. We applied five different algorithms (BioClim, Domain, Maxent, SVM, and Random Forest) to model the distribution of M. tuberculata and evaluate the relative influence of each predictor variable. Although models including dispersal as a predictor performed slightly better than models omitting it, climatic predictors were found to be more important to describe species distribution across all SDMs. Our results suggest that although dispersal limits the potential geographic areas that the species may reach, abiotic parameters determine where M. tuberculata actually lives. Finally, we used consensus maps to prioritize areas for future field surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allouche, O., O. Steinitz, D. Rotem, A. Rosenfeld & R. Kadmon, 2008. Incorporating distance constraints into species distribution models. Journal of Applied Ecology 45: 599–609.

    Article  Google Scholar 

  • Alves, R. R., 2009. Fauna used in popular medicine in Northeast Brazil. Journal of Ethnobiology and Ethnomedicine 5: 1 [available on internet at http://www.ethnobiomed.com/content/5/1/1].

  • Alves, R. R., H. N. Lima, M. C. Tavares, W. M. Souto, R. R. Barboza & A. Vasconcellos, 2008. Animal-based remedies as complementary medicines in Santa Cruz do Capibaribe, Brazil. BMC Complementary and Alternative Medicine 8: 44 [available on internet at http://www.biomedcentral.com/1472-6882/8/44].

  • Alves, R. N., G. Pereira Filho, K. S. Vieira, W. S. Souto, L. E. Mendonça, P. F. G. P. Montenegro, W. de Almeida & W. S. Vieira, 2012. A zoological catalogue of hunted reptiles in the semiarid region of Brazil. Journal of Ethnobiology and Ethnomedicine 8: 27 [available on internet at http://www.ethnobiomed.com/content/8/1/27].

  • Angielczyk, K. D., R. W. Burroughs & C. R. Feldman, 2015. Do turtles follow the rules? Latitudinal gradients in species richness, body size, and geographic range area of the world’s turtles. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 324: 274–294.

    Article  Google Scholar 

  • Araújo, M. B. & M. New, 2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22: 42–47 [available on internet at http://linkinghub.elsevier.com/retrieve/pii/S016953470600303X].

  • Araújo, M. B., D. Nogués-Bravo, J. A. F. Diniz-Filho, A. M. Haywood, P. J. Valdes & C. Rahbek, 2008. Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31: 8–15.

    Article  Google Scholar 

  • Barve, N., V. Barve, A. Jiménez-Valverde, A. Lira-Noriega, S. P. Maher, A. T. Peterson, J. Soberón & F. Villalobos, 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222: 1810–1819.

    Article  Google Scholar 

  • Bodie, J. R. & R. D. Semlitsch, 2000. Spatial and temporal use of floodplain habitats by lentic and lotic species of aquatic turtles. Oecologia 122: 138–146.

    Article  CAS  PubMed  Google Scholar 

  • Bombi, P., L. Luiselli & M. D’Amen, 2011. When the method for mapping species matters: defining priority areas for conservation of African freshwater turtles. Diversity and Distributions 17: 581–592.

    Article  Google Scholar 

  • Buckley, L. B., A. H. Hurlbert & W. Jetz, 2012. Broad-scale ecological implications of ectothermy and endothermy in changing environments. Global Ecology and Biogeography 21: 873–885.

    Article  Google Scholar 

  • Busby, J. R., 1986. A biogeoclimatic analysis of Nothofagus cunninghamii (Hook.) Oerst. in southeastern Australia. Austral Ecology 11: 1–7.

    Article  Google Scholar 

  • Butler, C. J., B. D. Stanila, J. B. Iverson, P. A. Stone & M. Bryson, 2016. Projected changes in climatic suitability for Kinosternon turtles by 2050 and 2070. Ecology and Evolution 6: 7690–7705.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpenter, G., A. N. Gillison & J. Winter, 1993. DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodiversity and Conservation 2: 667–680.

    Article  Google Scholar 

  • Cutler, D. R., T. C. Edwards, K. H. Beard, A. Cutler, K. T. Hess, J. Gibson & J. J. Lawler, 2007. Random forests for classification in ecology. Ecology 88: 2783–2792.

    Article  PubMed  Google Scholar 

  • de Oliveira, G. & J. A. F. Diniz-Filho, 2010. Spatial patterns of terrestrial vertebrates richness in Brazilian semiarid, Northeastern Brazil: selecting hypotheses and revealing constraints. Journal of Arid Environments 74: 1418–1426.

    Article  Google Scholar 

  • Diniz-Filho, J. A. F., L. Mauricio Bini, T. Fernando Rangel, R. D. Loyola, C. Hof, D. Nogués-Bravo & M. B. Araújo, 2009. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32: 897–906.

    Article  Google Scholar 

  • Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré, J. R. G. Marquéz, B. Gruber, B. Lafourcade, P. J. Leitão, T. Münkemüller, C. Mcclean, P. E. Osborne, B. Reineking, B. Schröder, A. K. Skidmore, D. Zurell & S. Lautenbach, 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 027–046.

    Article  Google Scholar 

  • Elith, J., C. H. Graham, R. P. Anderson, M. Dudı, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A. T. Peterson, S. J. Phillips, K. Richardson, R. Scachetti-pereira, R. E. Schapire, J. Soberón, S. Williams, M. S. Wisz & N. E. Zimmermann, 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.

    Article  Google Scholar 

  • Ficetola, G. F., E. Padoa-Schioppa, A. Monti, R. Massa, F. De Bernardi & L. Bottoni, 2004. The importance of aquatic and terrestrial habitat for the European pond turtle (Emys orbicularis): implications for conservation planning and management. Canadian Journal of Zoology 82: 1704–1712.

    Article  Google Scholar 

  • Franklin, J., 2009. Mapping Species Distributions: Spatial Inference and Prediction (Ecology, Biodiversity and Conservation). Cambridge University Press, Cambridge.

    Google Scholar 

  • Guisan, A., A. Lehmann, S. Ferrier, M. Austin, J. M. C. Overton, R. Aspinall & T. Hastie, 2006. Making better biogeographical predictions of species’ distributions. Journal of Applied Ecology 43: 386–392.

    Article  Google Scholar 

  • Hecnar, S. J., 1999. Patterns of turtle species’ geographic range size and a test of Rapoport’s rule. Ecography 22: 436–446.

    Article  Google Scholar 

  • Hijmans, R. J., 2015. Raster: Geographic Data Analysis and Modeling. R package version 2.3-40 [available on internet at http://cran.r-project.org/package=raster].

  • Hijmans, R. J., S. Phillips, J. Leathwick & J. Elith, 2015. Dismo: Species Distribution Modeling. R package version 1.0-12. [available on internet at http://cran.r-project.org/web/packages/dismo/index.html].

  • Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones & A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.

    Article  Google Scholar 

  • Hortal, J., F. de Bello, J. A. F. Diniz-Filho, T. M. Lewinsohn, J. M. Lobo & R. J. Ladle, 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics 46: 523–549 [available on internet at http://www.annualreviews.org/doi/10.1146/annurev-ecolsys-112414-054400].

  • Ihlow, F., J. Dambach, J. O. Engler, M. Flecks, T. Hartmann, S. Nekum, H. Rajaei & D. Rödder, 2012. On the brink of extinction? How climate change may affect global chelonian species richness and distribution. Global Change Biology 18: 1520–1530.

    Article  Google Scholar 

  • Iverson, J. B., 1992. Global correlates of species richness in turtles. Herpetological Journal 2: 77–81.

    Google Scholar 

  • Karatzoglou, A., A. Smola, K. Hornik & A. Zeileis, 2004. kernlab – an S4 package for kernel methods in R. Journal of Statistical Software 11 [available on internet at http://www.jstatsoft.org/v11/i09/].

  • Liaw, A. & M. Wiener, 2002. Classification and regression by randomForest. R News 2: 18–22.

    Google Scholar 

  • Menuz, D. R., K. M. Kettenring, C. P. Hawkins & D. R. Cutler, 2015. Non-equilibrium in plant distribution models – only an issue for introduced or dispersal limited species? Ecography 38: 231–240.

    Article  Google Scholar 

  • Molina, F. D. B. & N. Gomes, 1998. Incubação artificial dos ovos e processo de eclosão em Trachemys dorbignyi (Duméril & Bibron) (Reptilia, Testudines, Emydidae). Revista Brasileira de Zoologia 15: 135–143.

    Article  Google Scholar 

  • Packard, G. C., M. J. Packard, K. Miller & T. J. Boardman, 1987. Influence of moisture, temperature, and substrate on snapping turtle eggs and embryos. Ecology 68: 983 [available on internet at http://www.jstor.org/stable/1938369?origin=crossref].

  • Peterson, A. T., J. Soberón, R. G. Pearson, R. P. Anderson, E. Martínez-Meyer, M. Nakamura & M. B. Araújo, 2011. Ecological Niches and Geographic Distributions. Princeton University Press, New Jersey.

    Google Scholar 

  • Phillips, S. J., R. P. Anderson & R. E. Schapire, 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259 [available on internet at http://linkinghub.elsevier.com/retrieve/pii/S030438000500267X].

  • Rödder, D., S. Schmidtlein, M. Veith & S. Lötters, 2009. Alien invasive slider turtle in unpredicted habitat: a matter of niche shift or of predictors studied?. PLoS ONE 4: e7843 [available on internet at http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2776975&tool=pmcentrez&rendertype=abstract].

  • Rodrigues, J. F. M., M. T. P. Coelho, S. Varela & J. A. F. Diniz-Filho, 2016. Invasion risk of the pond slider turtle is underestimated when niche expansion occurs. Freshwater Biology 61: 1119–1127.

    Article  Google Scholar 

  • Rodrigues, J. F. M., M. Á. Olalla-Tárraga, J. B. Iverson, T. S. B. Akre & J. A. F. Diniz-Filho, 2017. Time and environment explain the current richness distribution of non-marine turtles worldwide. Ecography. https://doi.org/10.1111/ecog.02649.

    Google Scholar 

  • Roe, J. H. & A. Georges, 2008. Maintenance of variable responses for coping with wetland drying in freshwater turtles. Ecology 89: 485–494.

    Article  PubMed  Google Scholar 

  • Silveira, A. L. & R. V. E. Valinhas, 2010. Primeiro registro de Mesoclemmys tuberculata (Reptilia, Testudines, Chelidae) em área de Cerrado no Estado de Minas Gerais, Sudeste do Brasil. Biotemas 23: 157–161.

    Article  Google Scholar 

  • Soberón, J., 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10: 1115–1123.

    Article  PubMed  Google Scholar 

  • Soberón, J. M., 2010. Niche and area of distribution modeling: a population ecology perspective. Ecography 33: 159–167.

    Article  Google Scholar 

  • Soberón, J. & A. T. Peterson, 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2: 1–10 [available on internet at https://journals.ku.edu/index.php/jbi/article/view/4/2].

  • Soberón, J. & M. Nakamura, 2009. Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences 106: 19644–19650 [available on internet at http://www.pnas.org/content/106/Supplement_2/19644.long].

  • Sobral-Souza, T., M. S. Lima-Ribeiro & V. N. Solferini, 2015. Biogeography of neotropical rainforests: past connections between Amazon and Atlantic Forest detected by ecological niche modeling. Evolutionary Ecology 29: 643–655.

    Article  Google Scholar 

  • Souza, F. L., 2005. Geographical distribution patterns of South American side-necked turtles (Chelidae), with emphasis on Brazilian Species. Revista Española de Herpetología 19: 33–46.

    Google Scholar 

  • Václavík, T. & R. K. Meentemeyer, 2009. Invasive species distribution modeling (iSDM): are absence data and dispersal constraints needed to predict actual distributions? Ecological Modelling 220: 3248–3258 [available on internet at http://linkinghub.elsevier.com/retrieve/pii/S0304380009005742].

  • Vanzolini, P. E., A. M. M. Ramos-Costa & L. J. Vitt, 1980. Repteis das caatingas. Academia Brasileira de Ciências, Rio de Janeiro.

    Book  Google Scholar 

Download references

Acknowledgements

JFMR would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the Ph.D. student fellowship and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the researcher fellowship (Project MCTIC/CNPq Grant #proc. 465610/2014-5, Grant #380759/2017-9). MSL-R is grateful for the financial support from CNPq (Grant #447426/2014-1) and FAPEG (Grant #2012/1026.700.1086) to our research program on species distribution modeling. This manuscript is also part of the studies currently developed in the context of National Institutes for Science and Technology (Instituto Nacional de Ciência e Tecnologia - INCT) in ecology, evolution, and biodiversity conservation, supported by MCTIC/CNPq (Grant #465610/2014-5) and FAPEG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Fabrício Mota Rodrigues.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Juan Carlos Molinero

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 196 kb)

Supplementary figure and references containing occurrence records of Mesoclemmys tuberculata

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, J.F.M., Lima-Ribeiro, M.S. Predicting where species could go: climate is more important than dispersal for explaining the distribution of a South American turtle. Hydrobiologia 808, 343–352 (2018). https://doi.org/10.1007/s10750-017-3436-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3436-4

Keywords

Navigation