Skip to main content

Advertisement

Log in

Contrasting patterns in the vertical distribution of decapod crustaceans throughout ontogeny

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In marine ecosystems, the most significant migration observed in terms of biomass distribution is the one connected with the vertical movements in the water column. In the present study, the vertical profiles of the mesopelagic shrimps Gennadas elegans, Eusergestes arcticus, Sergia robusta, and the epipelagic Parasergestes vigilax in the Balearic Sea (western Mediterranean), during the stratified (summer) and non-stratified (autumn) hydrographic conditions, were investigated through their ontogeny, from the larval to adult stages. The mesopelagic adults were observed to move down to the deeper layers during the night more than during the daylight hours. Most larvae aggregated within the limits of the upper water column. The P. vigilax larvae were collected only during the stratified period. The first two larval stages vertical distribution indicates that the mesopelagic crustacean spawning could occur at greater depths. During the non-stratified period, the larvae of the mesopelagic species tended to remain at about 500 m depth at night, rising towards the upper layers at sunrise. Vertical patterns are discussed, as strategies associated with predator–prey trade-offs. To our knowledge, the present study is the first such attempt to jointly analyze the vertical migrations of the developmental stages of the pelagic shrimps in the Mediterranean Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alcaraz, M., A. Calbet, M. Estrada, C. Marrase, E. Saiz & I. Trepat, 2007. Physical control of zooplankton communities in the Catalan Sea. Progress in Oceanography 74: 294–312.

    Article  Google Scholar 

  • Alemany, F., L. Quintanilla, P. Velez-Belchi, A. García, D. Cortés, J. M. Rodríguez, M. F. de Puelles, C. González-Pola & J. L. López-Jurado, 2010. Characterization of the spawning habitat of Atlantic bluefin tuna and related species in the Balearic Sea (western Mediterranean). Progress in Oceanography 86(1): 21–38.

    Article  Google Scholar 

  • Andersen, V., A. Gubanova, P. Nival & T. Ruellet, 2001. Zooplankton community during the transition from spring bloom to oligotrophy in the open NW Mediterranean and effects of wind events. 2. Vertical distributions and migrations. Journal of Plankton Research 23(3): 243–261.

    Article  Google Scholar 

  • Andersen, V., C. Devey, A. Gubanova, M. Picheral, V. Melkinov, S. Tsarin & L. Prieur, 2004. Vertical distributions of zooplankton across the Almeria-Oran frontal zone (Mediterranean Sea). Journal of Plankton Research 2: 275–293.

    Article  Google Scholar 

  • Bainbridge, R., 1961. Migrations. In Waterman, T. H. (ed.), The Physiology of Crustacea, Vol. 2. Academic Press, New York: 431–463.

    Google Scholar 

  • Bartilotti, C., A. dos Santos, M. Castro, A. Peliz & A. M. P. Santos, 2014. Decapod larval retention within distributional bands in a coastal upwelling ecosystem. Marine Ecology Progress Series 507: 233–247.

    Article  Google Scholar 

  • Beaugrand, G., 2005. Monitoring pelagic ecosystems using plankton indicators. ICES Journal of Marine Science: Journal du Conseil 62: 333–338.

    Article  Google Scholar 

  • Burton, R. S., 1979. Depth regulatory behavior of the first stage zoea larvae of the sand crab Emerita analoga Stimpson (Decapoda: Hippidae). Journal of Experimental Marine Biology and Ecology 37: 255–270.

    Article  Google Scholar 

  • Calado, R., G. Dionísio & M. T. Dinis, 2007. Starvation resistance of early zoeal stages of marine ornamental shrimps Lysmata spp. (Decapoda: Hippolytidae) from different habitats. Journal of Experimental Marine Biology and Ecology 351(1–2): 226–233.

    Article  Google Scholar 

  • Cartes, J. E. & F. Sardá, 1992. Abundance and diversity of decapod crustaceans in the deep-Catalan Sea. Journal of Natural History 26: 1305–1323.

    Article  Google Scholar 

  • Cartes, J. E., F. Sardà, J. B. Company & J. Lleonart, 1993. Day–night migrations by deep-sea decapod crustaceans in experimental samplings in the western Mediterranean Sea. Journal of Experimental Marine Biology and Ecology 171: 63–73.

    Article  Google Scholar 

  • Cartes, J. E., J. C. Sorbe & F. Sardà, 1994. Spatial distribution of deepsea decapods and euphausiids near the bottom in the northwestern Mediterranean. Journal of Experimental Marine Biology and Ecology 179: 131–144.

    Article  Google Scholar 

  • Cartes, J. E., M. Hidalgo, V. Papiol, E. Massutí & J. Moranta, 2009. Changes in the diet and feeding of the hake Merluccius merluccius at the shelf-break of the Balearic Islands: influence of the mesopelagic-boundary community. Deep Sea Research Part I: Oceanographic Research Papers 56(3): 344–365.

    Article  Google Scholar 

  • Casanova, J. P., 1977. La faune pelagique profonde (zooplancton et micronecton) de la province atlanto-mediterraneenne. Aspects taxonomique, biologique et zoogeographique. These Doctoral, Universite de Provence, pp. 1–455

  • Castelbon, C., 1987. Les migrations nycthémérales du zooplancton. Université Aix-Marseille II, Déterminisme expérimental des réactions locomotrices. Thèse de Doctorat ès Sciences: 380p.

    Google Scholar 

  • Cohen, J. H. & Jr. R. B. Forward, 2005. Diel vertical migration of the marine copepod Calanopia americana. I. Twilight DVM and its relationship to the diel light cycle. Marine Biology 147(2):387–398

  • Criales, M. M., M. B. Robblee, J. A. Browder, H. Cárdenas & T. L. Jackson, 2010. Nearshore concentration of pink shrimp (Farfantepenaeus duorarum) postlarvae in northern Florida Bay in relation to nocturnal flood tide. Bulletin of Marine Science 86(1): 53–74.

    Google Scholar 

  • Dall, W., B. J. Hill, P. C. Rothlisberg & D. J. Sharples, 1990. The biology of the Penaeidae. Advances in Marine Biology 27: 1–489.

    Google Scholar 

  • Dekshenieks, M. M., E. E. Hofmann, J. M. Klinck & E. N. Powell, 1996. Modeling the vertical distribution of oyster larvae in response to environmental conditions. Marine Ecology Progress Series 136(1): 97–110.

    Article  Google Scholar 

  • Donaldson, H. A., 1975. Vertical distribution and feeding of sergestid shrimps (Decapoda: Natantia) collected near Bermuda. Marine Biology 31(1): 37–50.

    Article  Google Scholar 

  • Dos Santos, A. & J. A. Lindley, 2001. Crustacea Decapoda: Larvae II. Dendrobranchiata (Aristeidae, Benthesicymidae, Penaeidae, Solenoceridae, Sicyonidae, Sergestidae, and Luciferidae). ICES Identification Leaflets for Plankton. Fiches d’identification du plancton 186

  • Dos Santos, A. & J. I. Gonzalez-Gordillo, 2004. Illustrated keys for the identification of the Pleocyemata (Crustacea: Decapoda) zoeal stages, from the coastal region of south-western Europe. Journal of the Marine Biological Association of the United Kingdom 84: 205–227.

    Article  Google Scholar 

  • Dos Santos, A., A. P. Santos, V. P. Conway, C. Bartilotti, P. Lourenço & H. Queiroga, 2008. Diel vertical migration of decapod larvae in the Portuguese coastal upwelling ecosystem: implications for offshore transport. Marine Ecology Progress Series 359: 171–183.

    Article  Google Scholar 

  • De Robertis, A., 2002. Size-dependent visual predation risk and the timing of vertical migration: an optimization model. Limnology and Oceanography 47: 925–933.

    Article  Google Scholar 

  • Estrada, M., C. Marrasé, M. Latasa, E. Berdalet, M. Delgado & T. Riera, 1993. Variability of deep chlorophyll maximum characteristics in the North-western Mediterranean. Marine Ecology Progress Series 92: 289–300.

    Article  Google Scholar 

  • Ewald, J., 1965. The laboratory rearing of pink shrimp, Penaeus duorarum, Burkenroad. Bulletin of Marine Science 15(2): 43649.

    Google Scholar 

  • Fiksen, Ø., C. Jørgensen, T. Kristiansen, F. Vikebø & G. Huse, 2007. Linking behavioural ecology and oceanography: larval behaviour determines growth, mortality and dispersal. Marine Ecology Progress Series 347: 195–205.

    Article  Google Scholar 

  • Foxton, P., 1970. The Vertical Distribution of Pelagic Decapods [Crustacea: Natantia] Collected on the Sond Cruise 1965 II. The Penaeidea and General Discussion. Journal of the Marine Biological Association of the United Kingdom 50(04): 961–1000.

    Article  Google Scholar 

  • Foxton, P. & H. S. J. Roe, 1974. Observations on the nocturnal feeding of some mesopelagic decapod Crustacea. Marine Biology 28(1): 37–49.

    Article  Google Scholar 

  • Franqueville, C., 1971. Macroplancton profond (invertébrés) de la Méditerranée nord-occidentale. Tethys 3: 11–56.

    Google Scholar 

  • Giménez, L., 2002. Effects of prehatching salinity and initial larval biomass on survival and duration of development in the zoea 1 of the estuarine crab, Chasmagnathus granulata, under nutritional stress. Journal of Experimental Marine Biology and Ecology 270(1): 93–110.

    Article  Google Scholar 

  • Hidalgo, M., P. Reglero, D. Álvarez-Berastegui, A. P. Torres, I. Álvarez, J. M. Rodriguez, A. Carbonell, R. Balbín & F. Alemany, 2014. Hydrographic and biological components of the seascape structure the meroplankton community in a frontal system. Marine Ecology Progress Series 505: 65–80.

    Article  Google Scholar 

  • Irigoien, X., D. V. Conway & R. P. Harris, 2004. Flexible diel vertical migration behaviour of zooplankton in the Irish Sea. Marine Ecology Progress Series 267: 85–97.

    Article  Google Scholar 

  • Jo, S. G. & M. Omori, 1996. Seasonal occurrence and vertical distribution of larvae and post-larvae of the pelagic shrimp, Acetes japonicus Kishinouye (Sergestinae), in the central part of the Seto inland sea. Bulletin of Plankton Society of Japan (Japan), Japan.

    Google Scholar 

  • Kitagawa, T., Y. Kato, M. J. Miller, Y. Sasai, H. Sasaki & S. Kimura, 2010. The restricted spawning area and season of Pacific bluefin tuna facilitate use of nursery areas: A modeling approach to larval and juvenile dispersal processes. Journal of Experimental Marine Biology and Ecology 393(1): 23–31.

    Article  Google Scholar 

  • Klages, M., K. Vopel, H. Bluhm, T. Brey, T. Soltwedel & W. E. Arntz, 2001. Deep-sea food falls: first observation of a natural event in the Arctic Ocean. Polar Biology 24(4): 292–295.

    Article  Google Scholar 

  • Koettker, A. G., A. S. Freire & P. Y. Sumida, 2010. Temporal, diel and spatial variability of decapod larvae from St Paul’s Rocks, an equatorial oceanic island of Brazil. Journal of the Marine Biological Association of the United Kingdom 90(06): 1227–1239.

    Article  Google Scholar 

  • Koukouras, A., 2000. The pelagic shrimps (Decapoda Natantia) of the Aegean Sea with an account of the Mediterranean species. Crustaceana 73: 801–814.

    Article  Google Scholar 

  • Kunze, H. B., S. G. Morgan & K. M. Lwiza, 2013. Field test of the behavioral regulation of larval transport. Marine Ecology Progress Series 487: 71–87.

    Article  Google Scholar 

  • Lindley, J. A., R. Williams & D. V. P. Conway, 1994. Variability in dry weight and vertical distributions of decapod larvae in the Irish Sea and North Sea during the spring. Marine Biology 120: 385–395.

    Article  Google Scholar 

  • Martin, J. W., M. M. Criales & A. Dos santos, 2014. Atlas of Crustacean Larvae. Dendrobranchiata Chapter 46: 235–238.

    Google Scholar 

  • Massutí, E., M. P. Olivar, S. Monserrat, L. Rueda & P. Oliver, 2014. Towards understanding the influence of environmental conditions on demersal resources and ecosystems in the western Mediterranean: motivations, aims and methods of the IDEADOS project. Journal of Marine Systems 138: 3–19.

    Article  Google Scholar 

  • McCullagh, P. & J. A. Nelder, 1989. Generalized linear models, 2nd ed. Chapman & Hall, London.

    Book  Google Scholar 

  • Millot, C., 1994. Models and data, a synergetic approach in the western Mediterranean Sea. In Malanotte-Rizzoli, P. & A. R. Robinson (eds), Ocean Processes in Climate Dynamics, Global and Mediterranean Examples. Kluwer, Amsterdam: 407–425.

    Chapter  Google Scholar 

  • Olivar, M. P., A. Bernal, B. Moli, M. Peña, R. Balbín, A. Castellón, J. Miquel & E. Massutí, 2012. Vertical distribution, diversity and assemblages of mesopelagic fishes in the western Mediterranean. Deep-Sea Research Part I 62: 53–69.

    Article  Google Scholar 

  • Olivar, M. P., A. Sabatés, F. Alemany, R. Balbín, M. L. Fernández de Puelles & A. P. Torres, 2014. Diel-depth distributions of fish larvae off the Balearic Islands (western Mediterranean) under two environmental scenarios. Journal of Marine Systems 138: 127–138.

    Article  Google Scholar 

  • Omori, M., 1974. The biology of pelagic shrimps in the ocean. Advances in Marine Biology 12: 233–324.

    Article  Google Scholar 

  • Omori, M. & D. Gluck, 1979. Life history and vertical migration of the pelagic shrimp Sergestes similis off the Southern California coast. Fisheries Bulletin 77(1): 183–198.

    Google Scholar 

  • Ouellet, P. & J. P. Allard, 2006. Vertical distribution and behaviour of shrimp Pandalus borealis larval stages in thermally stratified water columns: laboratory experiment and field observations. Fisheries Oceanography 15: 373–389.

    Article  Google Scholar 

  • Pakhomov, E. & O. Yamamura, eds, 2010. Report of the advisory panel on micronekton sampling inter-calibration experiment. North Pacific Marine Science Organization (PICES).

  • Pearre Jr., S., 1979. Problems of detection and interpretation of vertical migration. Journal of Plankton Research 1(1): 29–44.

    Article  Google Scholar 

  • Pearre Jr., S., 2003. Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences. Biological Reviews 78: 1–79.

    Article  PubMed  Google Scholar 

  • Pérez, M. T., J. R. Dolan, F. Vidussi & E. Fukai, 2000. Diel vertical distribution of planktonic ciliates within the surface layer of the NW Mediterranean (May 1995). Deep-Sea Research Part I 47(3): 479–503.

    Article  Google Scholar 

  • Pires, R. F. T., M. Pan, A. M. P. Santos, A. Peliz, D. Boutov & A. dos Santos, 2013. Modelling the variation in larval dispersal of estuarine and coastal ghost shrimp: Upogebia congeners in the Gulf of Cadiz. Marine Ecology Progress Series 492: 153–168. doi:10.3354/meps10488.

    Article  Google Scholar 

  • Pochelon, P. N., A. Dos Santos, A. M. P. Santos & H. Queiroga, 2014. Vertical and horizontal larval distribution of an offshore brachyuran crab, Monodaeus couchii, off the south coast of Portugal. Scientia Marina 78(2): 249–256.

    Article  Google Scholar 

  • Pomar, L., M. Morsilli, P. Hallock & B. Bádenas, 2012. Internal waves, an under-explored source of turbulence events in the sedimentary record. Earth-Science Reviews 111(1): 56–81.

    Article  Google Scholar 

  • R Development Core Team (2005) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org

  • Raby, D., Y. Lagadeuc, J. J. Dodson & M. Mingelbier, 1994. Relationship between feeding and vertical distribution of bivalve larvae in stratified and mixed waters. Marine Ecology-Progress Series 103: 275–275.

    Article  Google Scholar 

  • Rothlisberg, P. C. & W. G. Pearcy, 1977. An epibenthic sampler used to study the ontogeny of vertical migration of Pandalus jordani (Decapoda, Caridea). Fishery Bulletin US 74: 994–997.

    Google Scholar 

  • Rotllant, G., F. J. Moyano, M. Andrés, A. Estévez, M. Díaz & E. Gisbert, 2010. Effect of delayed first feeding on larval performance of the spider crab Maja brachydactyla assessed by digestive enzyme activities and biometric parameters. Marine Biology 157: 2215–2227.

    Article  CAS  Google Scholar 

  • Russell, F. S., 1927. The vertical distribution of plankton in the sea. Biological Reviews 2(3): 213–261.

    Article  Google Scholar 

  • Saiz, E., A. Calbet, D. Atienza & M. Alcaraz, 2007. Feeding and production of zooplankton in the Catalan Sea (NW Mediterranean). Progress in Oceanography 74(2–3): 313–328.

    Article  Google Scholar 

  • Sardou, J., M. Etienne & V. Andersen, 1996. Seasonal abundance and vertical distributions of macroplankton and micronekton in the Northwestern Mediterranean Sea. Oceanologica Acta 19(6): 645–656.

    Google Scholar 

  • Simão, D. S., A. P. Torres, M. P. Olivar & P. Abelló, 2014. Vertical and temporal distribution of pelagic decapod crustaceans over the shelf-break and middle slope in two contrasting zones around Mallorca (western Mediterranean Sea). Journal of Marine Systems 138: 139–149.

    Article  Google Scholar 

  • Skjoldal, H. R., P. H. Wiebe, L. Postel, T. Knutsen, S. Kaartvedt & D. D. Sameoto, 2013. Intercomparison of zooplankton (net) sampling systems: Results from the ICES/GLOBEC sea-going workshop. Progress in Oceanography 108: 1–42.

    Article  Google Scholar 

  • Torres, A. P., A. Dos Santos, R. Balbín, F. Alemany, E. Massutí & P. Reglero, 2014. Decapod crustacean larval communities in the western Mediterranean: seasonal composition, horizontal and vertical distribution patterns. Journal of Marine Systems 138: 112–126.

    Article  Google Scholar 

  • van Haren, H. & T. J. Compton, 2013. Diel vertical migration in deep sea plankton is finely tuned to latitudinal and seasonal day length. PLoS ONE 8(5): e64435.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vereshchaka, A., 1994. North Atlantic and Caribbean species of Decapoda, Sergestidae) and their horizontal and vertical distribution. Zoological Museum University of Copenhagen 20(3): 73–95.

    Google Scholar 

  • Vidussi, F., J. C. Marty & J. Chiavérini, 2000. Phytoplankton pigment variations during the transition from spring bloom to oligotrophy in the northwestern Mediterranean Sea. Deep-Sea Res Part I 47(3): 423–445.

    Article  Google Scholar 

  • Zariquiey-Alvarez, R., 1968. Crustáceos Decápodos Ibéricos. Investigaciones Pesqueras 32: 1–510.

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to all participants in the IDEADOS surveys, as well as the chief scientists of both cruises. Special mention of thanks is due to the laboratory colleagues from COB, IPMA, and Lucia Rueda for the valuable suggestions in data analysis. The research was performed within the framework of the IDEADOS (CTM2008-04489-C03-01) project, funded by the National Plan I + D+i. A. P. Torres and M. Hidalgo were funded by a pre-doctoral FPI Fellowship and a post-doctoral contract, respectively, bestowed by the regional government of the Balearic Islands, Conselleria d’Educació, Cultura i Universitats, and selected as part of an operational program co-financed by the European Social Fund. The authors are also grateful to Integrated Marine Biogeochemistry and Ecosystem Research for the grant given to A. P. T. to present a part of these results in the Open Science Conference 2014, ‘Future Oceans’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asvin P. Torres.

Additional information

Handling editor: Juan Carlos Molinero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, A.P., Reglero, P., Hidalgo, M. et al. Contrasting patterns in the vertical distribution of decapod crustaceans throughout ontogeny. Hydrobiologia 808, 137–152 (2018). https://doi.org/10.1007/s10750-017-3414-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3414-x

Keywords

Navigation