Skip to main content

Advertisement

Log in

Water brownification may not promote invasions of submerged non-native macrophytes

  • INVASIVE SPECIES II
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Some environmental factors, such as brownification and eutrophication, may influence the successful invasions of non-native submerged macrophytes. However, few studies have focused on how interactions between these factors influence the performance of exotic submerged plants. Here, we conducted an experiment in 60 indoor containers (170 l) over 68 days using the native species Hydrilla verticillata (L. f.) Royle and the non-native species Elodea nuttallii (Planch.) St. John to test the effects of brownification, eutrophication and their interactions on the growth and competition of native and non-native aquatic plants. Our results showed that the biomass of both H. verticillata and E. nuttallii increased in the brown water treatment and that eutrophication and water brownification did not lead to a shift from a native species-dominated system to a non-native-dominated system. However, brown water treatment decreased the relative competitive ability of E. nuttallii, and this decrease was exacerbated when brown water and nutrient treatments were combined. Our results indicated that some environmental factors, such as water brownification, eutrophication and their interactions, may not benefit the competition of some non-native submerged macrophytes. Further studies with more species are needed to corroborate these conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alpert, P., E. Bone & C. Holzapfel, 2000. Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspectives in Plant Ecology, Evolution and Systematics 3: 52–66.

    Article  Google Scholar 

  • Arthaud, F., M. Mousset, D. Vallod, J. Robin, A. Wezel & G. Bornette, 2012. Effect of light stress from phytoplankton on the relationship between aquatic vegetation and the propagule bank in shallow lakes. Freshwater Biology 57: 666–675.

    Article  Google Scholar 

  • Bertness, M. D. & R. Callaway, 1994. Positive interactions in communities. Trends in Ecology & Evolution 9: 191–193.

    Article  CAS  Google Scholar 

  • Bianchini, I., M. B. Cunha-Santino, J. A. M. Milan, C. J. Rodrigues & J. H. P. Dias, 2010. Growth of Hydrilla verticillata (L.f.) Royle under controlled conditions. Hydrobiologia 644: 301–312.

    Article  Google Scholar 

  • Blaser, W. J., J. Sitters, S. P. Hart, P. J. Edwards & H. Olde Venterink, 2013. Facilitative or competitive effects of woody plants on understorey vegetation depend on N-fixation, canopy shape and rainfall. Journal of Ecology 101: 1598–1603.

    Article  Google Scholar 

  • Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences 73: 1–14.

    Article  CAS  Google Scholar 

  • Cook, C. D. K. & K. Urmi-König, 1985. A revision of the genus Elodea (Hydrocharitaceae). Aquatic Botany 21: 111–156.

    Article  Google Scholar 

  • Crain, C. M., 2008. Interactions between marsh plant species vary in direction and strength depending on environmental and consumer context. Journal of Ecology 96(1): 166–173.

    Google Scholar 

  • Davis, M. A., J. P. Grime & K. Thompson, 2000. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88: 528–534.

    Article  Google Scholar 

  • Dawson, W., R. P. Rohr, M. van Kleunen & M. Fischer, 2012. Alien plant species with a wider global distribution are better able to capitalize on increased resource availability. New Phytologist 194: 859–867.

    Article  PubMed  Google Scholar 

  • Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135–1142.

    Article  PubMed  Google Scholar 

  • Feuchtmayr, H., R. Moran, K. Hatton, L. Connor, T. Heyes, B. Moss, I. Harvey & D. Atkinson, 2009. Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms. Journal of Applied Ecology 46: 713–723.

    Article  Google Scholar 

  • Flores-Moreno, H., P. B. Reich, E. M. Lind, L. L. Sullivan, E. W. Seabloom, L. Yahdjian & J. D. Bakker, 2016. Climate modifies response of non-native and native species richness to nutrient enrichment. Philosophical Transactions of the Royal Society B 371(1694): 20150273.

    Article  CAS  Google Scholar 

  • Galil, B. S., S. Nehring & V. Panov, 2007. Waterways as invasion highways – impact of climate change and globalization. In Nentwig, W. (ed.), Biological invasions. Springer, Heidelberg: 59–74.

    Chapter  Google Scholar 

  • Graneli, W., 2012. Brownification of lakes. In Bengtsson, L., R. W. Herschy & R. W. Fairbridge (eds), Encyclopedia of Lakes and Reservoirs. Springer, Dordrecht: 117–119.

    Google Scholar 

  • Hansson, L. A., A. Nicolle, W. Graneli, P. Hallgren, E. Kritzberg, A. Persson, J. Bjork, P. A. Nilsson & C. Bronmark, 2013. Food-chain length alters community responses to global change in aquatic systems. Nature Climate Change 3: 228–233.

    Article  Google Scholar 

  • Havens, K. E., B. Sharfstein, M. A. Brady, T. L. East, M. C. Harwell, R. P. Maki & A. J. Rodusky, 2004. Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA. Aquatic Botany 78: 67–82.

    Article  Google Scholar 

  • He, Q. & M. D. Bertness, 2014. Extreme stresses, niches, and positive species interactions along stress gradients. Ecology 95: 1437–1443.

    Article  PubMed  Google Scholar 

  • Hidding, B., R. J. Brederveld & B. A. Nolet, 2010. How a bottom-dweller beats the canopy: inhibition of an aquatic weed (Potamogeton pectinatus) by macroalgae (Chara spp.). Freshwater Biology 55: 1758–1768.

    Google Scholar 

  • Karlsson, J., P. Bystrom, J. Ask, P. Ask, L. Persson & M. Jansson, 2009. Light limitation of nutrient-poor lake ecosystems. Nature 460: 506–509.

    Article  PubMed  CAS  Google Scholar 

  • Mony, C., T. J. Koschnick, W. T. Haller & S. Muller, 2007. Competition between two invasive Hydrocharitaceae (Hydrilla verticillata (L.f.) (Royle) and Egeria densa (Planch)) as influenced by sediment fertility and season. Aquatic Botany 86: 236–242.

    Article  Google Scholar 

  • Mormul, R. P., J. Ahlgren, M. K. Ekvall, L. A. Hansson & C. Brönmark, 2012. Water brownification may increase the invasibility of a submerged non-native macrophyte. Biological Invasions 14: 2091–2099.

    Article  Google Scholar 

  • Palacio-López, K. & E. Gianoli, 2011. Invasive plants do not display greater phenotypic plasticity than their native or non-invasive counterparts: a meta-analysis. Oikos 120: 1393–1401.

    Article  Google Scholar 

  • Phillips, G. L., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany 4: 103–126.

    Article  Google Scholar 

  • Rautio, M. & B. Tartarotti, 2010. UV radiation and freshwater zooplankton: damage, protection and recovery. Freshwater Reviews: A Journal of the Freshwater Biological Association 3: 105–131.

    Article  Google Scholar 

  • Rodriguez, L. F., 2006. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biological Invasions 8(4): 927–939.

    Article  Google Scholar 

  • Salonen, K. & A. Vähätalo, 1994. Photochemical mineralisation of dissolved organic matter in lake Skjervatjern. Environment International 20: 307–312.

    Article  CAS  Google Scholar 

  • Shen, X. Y., S. L. Peng, B. M. Chen, J. X. Pang, L. Y. Chen, H. M. Xu & Y. P. Hou, 2011. Do higher resource capture ability and utilization efficiency facilitate the successful invasion of native plants? Biological Invasions 13: 869–881.

    Article  Google Scholar 

  • Silveira, M. J., S. M. Thomaz, R. P. Mormul & F. P. Camacho, 2009. Effects of desiccation and sediment type on early regeneration of plant fragments of three species of aquatic macrophytes. International Review of Hydrobiology 94: 169–178.

    Article  CAS  Google Scholar 

  • Smith, V. H. & D. W. Schindler, 2009. Eutrophication science: where do we go from here? Trends in Ecology & Evolution 24: 201–207.

    Article  Google Scholar 

  • Solomon, C. T., S. E. Jones, B. C. Weidel, I. Buffam, M. L. Fork, J. Karlsson, S. Larsen, J. T. Lennon, J. S. Read, S. Sadro & J. E. Saros, 2015. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems 18: 376–389.

    Article  Google Scholar 

  • Sousa, W. T. Z., S. M. Thomaz, K. J. Murphy, M. J. Silveira & R. P. Mormul, 2009. Environmental predictors of the occurrence of exotic Hydrilla verticillata (L.f.) Royle and native Egeria najas Planch in a sub-tropical river floodplain: the Upper River Paraná, Brazil. Hydrobiologia 632: 65–78.

    Article  Google Scholar 

  • Sparks, D. L. & J. M. Bartels, 1996. Methods of soil analysis: chemical methods. Soil Science Society of America, Madison.

    Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton.

    Google Scholar 

  • Stiers, I., J. Njambuya & L. Triest, 2011. Competitive abilities of invasive Lagarosiphon major and native Ceratophyllum demersum in monocultures and mixed cultures in relation to experimental sediment dredging. Aquatic Botany 95: 161–166.

    Article  Google Scholar 

  • Tavechio, W. L. G. & S. M. Thomaz, 2003. Effects of light on the growth and photosynthesis of Egeria najas planchon. Brazilian Archives of Biology and Technology 46: 203–209.

    Article  Google Scholar 

  • Vähätalo, A. & K. Salonen, 1997. Photochemical degradation of chromophoric dissolved organic matter and its contribution to bacterial respiration in a humic lake. Nord Humus Newslett 4: 14.

    Google Scholar 

  • Valéry, L., H. Fritz, J. C. Lefeuvre & D. Simberloff, 2008. In search of a real definition of the biological invasion phenomenon itself. Biological Invasions 10: 1345–1351.

    Article  Google Scholar 

  • Wang, Y. L., Y. Y. Gao, D. Yu & C. H. Liu, 2015. Physiological response of three submerged macrophytes to the high temperature and light intensity of summer. Journal of Hydroecology 5: 95–101.

    Google Scholar 

  • Weigelt, A. & P. Jolliffe, 2003. Indices of plant competition. Journal of Ecology 91: 707–720.

    Article  Google Scholar 

  • Williamson, C. E., B. R. Hargreaves, P. S. Orr & P. A. Lovera, 1999. Does UV play a role in changes in predation and zooplankton community structure in acidified lakes? Limnology and Oceanography 44: 774–783.

    Article  CAS  Google Scholar 

  • Xie, D., D. Yu, W. H. You & L. G. Wang, 2013. Algae mediate submerged macrophyte response to nutrient and dissolved inorganic carbon loading: a mesocosm study on different species. Chemosphere 93: 1301–1308.

    Article  PubMed  CAS  Google Scholar 

  • Xu, J. W., W. Li, G. Liu, L. Zhang & W. Liu, 2007. Inter-specific competition between two submerged macrophytes, Elodea nuttallii and Hydrilla verticillata. Journal of Plant Ecology (Chinese Version) 31: 83–92.

    Article  Google Scholar 

  • Yang, Q. & W. Li, 1989. The introduction of Elodea nuttallii in East Taihu Lake (in Chinese). Memoirs of Nanjing Institute of Geography and Limnology Academia Sinica 6: 84–92.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding support from the Special Foundation of National Science and Technology Basic Research (2013FY112300), the Major Science and Technology Program for Water Pollution Control and Treatment (2015ZX07503-005) and the National Natural Science Foundation of China (31570366).

Author information

Authors and Affiliations

Authors

Contributions

DY and ZL conceived the ideas and designed the experiment; XX, LY and XH conducted the experiment and collected the data; ZL and XX analysed the data and XX led the writing.

Corresponding authors

Correspondence to Zhongqiang Li or Dan Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Guest editors: John E. Havel, Sidinei M. Thomaz, Lee B. Kats, Katya E. Kovalenko & Luciano N. Santos / Aquatic Invasive Species II

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Yang, L., Huang, X. et al. Water brownification may not promote invasions of submerged non-native macrophytes. Hydrobiologia 817, 215–225 (2018). https://doi.org/10.1007/s10750-017-3387-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3387-9

Keywords

Navigation