Skip to main content

Advertisement

Log in

Effects of piers on assemblage composition, abundance, and taxa richness of small epibenthic invertebrates

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We examined the effects of two types of piers on composition, abundance, and diversity of small epibenthic invertebrates and on several taxa known to be important prey for juveniles of three species of Pacific salmon. Using an epibenthic pump, invertebrates were sampled under and away from piers. Piers located within a dense urban aggregation of overwater structures and ferry piers occurring singly in less urbanized landscapes negatively impacted small invertebrates. Except for polychaetes at ferry piers and the harpacticoid copepods Tisbe species at urban piers, taxa richness and densities of invertebrate groupings and several juvenile salmon prey taxa were significantly decreased underneath both pier types and also near the edge of ferry piers. Assemblage structure was also greatly influenced by piers, with under-pier assemblages dominated by Tisbe species and several other taxa, and assemblages outside piers characterized by many taxa. Many of the negatively impacted taxa are associates of algae and seagrasses that were reduced under the piers. For juvenile salmon and other fish, reducing shade under piers by adding light to the environment may improve habitat access and quality in areas where piers decrease fish feeding opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Able, K. W. & J. T. Duffy-Anderson, 2005. A synthesis of impacts of piers on juvenile fishes and selected invertebrates in the lower Hudson River. Rutgers University, Institute of Marine and Coastal Sciences Technical Report #2005-13, New Brunswick, NJ.

  • Able, K. W., J. P. Manderson & A. L. Studholme, 1998. The distribution of shallow water juvenile fishes in an urban estuary: the effects of man-made structures in the lower Hudson River. Estuaries 21: 731–744.

    Article  Google Scholar 

  • Anderson, M. J., 2005. PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Department of Statistics, University of Auckland, New Zealand.

  • Arunachalam, M. & N. B. Nair, 1988. Harpacticoid copepods associated with the seagrass Halophila ovalis in the Ashtamudi Estuary, south-west coast of India. Hydrobiologia 167(168): 151–522.

    Google Scholar 

  • Blanton, S. L., R. M. Thom & J. A. Southard, 2001. Documentation of ferry terminal shading, substrate composition, and algal and eelgrass coverage. Battelle, Pacific Northwest Division of Battelle Memorial Institute.

    Google Scholar 

  • Blockley, D. J., 2007. Effect of wharves on intertidal assemblages on seawalls in Sydney Harbour, Australia. Marine Environmental Research 63: 409–427.

    Article  CAS  PubMed  Google Scholar 

  • Bolker B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R Poulsen, M. H. H. Stevens & J. S. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution 24: 127–135.

  • Brennan, J. S., K. F. Higgins, J. R. Cordell & V. A. Stamatiou, 2004. Juvenile salmon composition, timing distribution, and diet in marine nearshore waters of central Puget Sound in 2001-2002. King County Department of Natural Resources and Parks, Seattle.

    Google Scholar 

  • Burdick, D. M. & F. T. Short, 1999. The effects of boat docks on eelgrass beds in coastal waters of Massachusetts. Environmental Management 23: 231–240.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, J. W., 2007. Gammaridea. In Carlton, J. T. (ed), The Light and Smith Manual: Intertidal Invertebrates from Central California to Oregon, 4th ed. University of California Press, Berkeley: 545–618.

    Google Scholar 

  • Chebanova, V. V., S. E. Frenkel & G. S. Zelenikhina, 2015. Feeding and food relationships of juvenile chum salmon (Oncorhynchus keta) and pink salmon (O. gorbuscha) in coastal waters of Prostor Bay (Iturup Island). Journal of Ichthyology 55: 671–678.

    Article  Google Scholar 

  • Cordell, J. R., J. D. Toft, S. H. Munsch & M. Goff, 2017. Benches, beaches, and bumps, how habitat monitoring and experimental science can inform urban seawall design. In Bilkovic, D. M., M. M. Mitchell, M. K. LaPeyre & J. D. Toft (eds), Living Shorelines: The Science and Management of Nature-Based Coastal Protection. CRC Press, Routledge: 421–438.

    Google Scholar 

  • D’Amours, D., 1987. Trophic phasing of juvenile chum salmon (Oncorhynchus keta Walbaum) and harpacticoid copepods in the Fraser River Estuary. PhD Thesis, University of British Columbia, Vancouver, BC

  • Duffy, E. J., D. A. Beauchamp, R. M. Sweeting, R. J. Beamish & J. S. Brennan, 2010. Ontogenetic diet shifts of juvenile Chinook salmon in nearshore and offshore habitats of Puget Sound. Transactions of the American Fisheries Society 139: 803–823.

    Article  Google Scholar 

  • Duffy-Anderson, J. T. & K. W. Able, 1999. Effects of municipal piers on the growth of juvenile fish in the Hudson River estuary: a study across a pier edge. Marine Biology 133: 409–418.

    Article  Google Scholar 

  • Duffy-Anderson, J. T. & K. W. Able, 2001. An assessment of the feeding success of young-of-the-year winter flounder (Pseudopleuronectes americanus) near a municipal pier in the Hudson River estuary, USA. Estuaries 24: 430–440.

    Article  Google Scholar 

  • Fukuoka, K. & H. Yamada, 2015. Food habits of juvenile tuskfishes (Choerodon schoenleinii and C. anchorago) in relation to food availability in the shallow waters of Ishigaki Island. Southwestern Japan. Fisheries Science 81: 331–344.

    Article  CAS  Google Scholar 

  • Gee, J. M., R. M. Warwick, M. Schaanning, J. A. Berge & W. G. Ambrose, 1985. Effects of organic enrichment on meiofaunal abundance and assemblage structure in sublittoral soft sediments. Journal of Experimental Marine Biology and Ecology 91: 247–262.

    Article  Google Scholar 

  • Gladstone, W. & G. Courtenay, 2014. Impacts of docks on seagrass and effects of management practices to ameliorate these impacts. Estuarine, Coastal and Shelf Science 136: 53–60.

    Article  Google Scholar 

  • Glasby, T. M., 1999. Effects of shading on subtidal epibiotic assemblages. Journal of Experimental Marine Biology and Ecology 234: 275–290.

    Article  Google Scholar 

  • Hauspie, R. & P. H. Polk, 1973. Swimming behaviour patterns in certain benthic harpacticoids (Copepoda). Crustaceana 25: 95–103.

    Article  Google Scholar 

  • Healey, M. C., 1979. Detritus and juvenile salmon production in the Nanaimo Estuary: I. Production and feeding rates of juvenile chum salmon (Oncorhynchus keta). Journal of the Fisheries Board of Canada 36: 488–496.

    Article  Google Scholar 

  • Hicks, G. R. F., 1980. Structure of phytal harpacticoid copepod assemblages and the influence of habitat complexity and turbidity. Journal of Experimental Marine Biology and Ecology 44:157–192.

  • Hothorn, T., F. Bretz, P. Westfall & R. M. Heiberger, 2008. Multcomp: simultaneous inference in general parametric models. R package version 1.0-0. R. Foundation for Statistical Computing. Vienna, Austria.

  • Humes, A. G., 1981a. A new species of Tegastes (Copepoda: Harpacticoida) associated with a scleractinian coral at Eniwetok atoll. Proceedings of the Biological Society of Washington 94: 254–263.

    Google Scholar 

  • Humes, A. G., 1981b. Harpacticoid copepods associated with Cnidaria in the Indo West Pacific. Journal of Crustacean Biology 94: 227–240.

    Article  Google Scholar 

  • Humes, A. G., 1984. Harpacticoid copepods associated with cnidarians in the tropical Pacific Ocean. Zoologica Scripta 13: 209–221.

    Article  Google Scholar 

  • Ivanenko, V. N., F. D. Ferrari & H.-U. Dahms, 2008. Copepodid development of Tegastes falcatus (Copepoda, Harpacticoida, Tegastidae) with a discussion of the male genital somite. Proceedings of the Biological Society of Washington 121: 191–225.

    Article  Google Scholar 

  • Ivankov, V. N. & V. V. Andreyeva, 1996. Strategy for culture, breeding and numerous dynamics of Sakhalin salmon populations. In Report of the PICES Workshop on the Okhotsk Sea and Adjacent Areas, 332–336.

  • Jenkins, G. P., A. Syme & P. I. Macreadie, 2011. Feeding ecology of King George whiting Sillaginodes punctatus (Perciformes) recruits in seagrass and unvegetated habitats. Does diet reflect habitat utilization? Journal of Fish Biology 78: 1561–1573.

    Article  CAS  PubMed  Google Scholar 

  • Kramer, M. J., D. R. Bellwood & O. Bellwood, 2012. Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef. Coral Reefs 31: 1007–1015.

    Article  Google Scholar 

  • Kramer, M. J., O. Bellwood & D. R. Bellwood, 2013. The trophic importance of algal turfs for coral reef fishes: the crustacean link. Coral Reefs 32: 575–583.

    Article  Google Scholar 

  • Kurdziel, J. P. & S. S. Bell, 1992. Emergence and dispersal of phytal-dwelling meiobenthic copepods. Journal of Experimental Marine Biology and Ecology 163: 43–64.

    Article  Google Scholar 

  • Landingham, J. H., 1982. Feeding ecology of pink and chum salmon fry in the nearshore habitat of Auke Bay. University of Alaska, Alaska.

    Google Scholar 

  • Lopez, G. W., 1982. Short-term population dynamics of Tisbe cucumariae (Copepoda: Harpacticoida). Marine Biology 168(3): 33–41.

    Google Scholar 

  • Marcotte, B. M., 1984. Behaviourally defined ecological resources and speciation in Tisbe (Copepoda: Harpacticoida). Journal of Crustacean Biology 4: 404–416.

    Article  Google Scholar 

  • Marcotte B.M., & B. C. Coull, 1974. Pollution, diversity and meiobenthic assemblages in the north Adriatic (Bay of Piran, Yugoslavia). Vie Milieu(B) 24: 281–300.

  • Mascart, T., G. Lepoint, S. Deschoemaeker, M. Binard, F. Remy & M. M. De Troch, 2015. Seasonal variability of meiofauna, especially harpacticoid copepods, in Posidonia oceanica macrophytodetritus accumulations. Journal of Sea Research 95: 149–160.

    Article  Google Scholar 

  • Mayama, H. & Y. Ishida, 2003. Japanese studies on the early ocean life of juvenile salmon. North Pacific Anadromous Fish Commission Bulletin 3: 41–67.

    Google Scholar 

  • Munsch, S. H., J. R. Cordell, J. D. Toft & E. E. Morgan, 2014. Effects of seawalls and piers on fish assemblages and juvenile salmon feeding behavior. North American Journal of Fisheries Management 34: 814–827.

    Article  Google Scholar 

  • Munsch, S. H., J. R. Cordell & J. D. Toft, 2015. Effects of seawall armoring on juvenile Pacific salmon diets in an urban estuarine embayment. Marine Ecology Progress Series 535: 213–229.

    Article  CAS  Google Scholar 

  • Munsch, S. H., J. R. Cordell & J. D. Toft, 2017. Effects of shoreline armouring and overwater structures on coastal and estuarine fish: opportunities for habitat improvement. Journal of Applied Ecology. doi:10.1111/1365-2664.12906.

    Google Scholar 

  • Oksanen, J. F., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. M., & H. Wagner, 2012 Vegan: Assemblage Ecology Package.

  • Ólafsson, E., A. Ingólfsson & M. B. Steinarsdóttir, 2001. Harpacticoid copepod assemblages of floating seaweed: controlling factors and implications for dispersal. Hydrobiologia 453: 189–200.

    Article  Google Scholar 

  • Ono, K. & C. A. Simenstad, 2014. Reducing the effect of overwater structures on migrating juvenile salmon: an experiment with light. Ecological Engineering 71: 180–189.

    Article  Google Scholar 

  • Ono, K., C. Simenstad, J. Toft, S. Southard, K. Sobocinski & A. Borde, 2010. Assessing and mitigating dock shading impacts on the behavior of juvenile Pacific salmon (Oncorhynchus spp.): can artificial light mitigate the effects? Washington State Department of Transportation Research Report. WA-RD, 755.

  • Polte, P. & C. Buschbaum, 2008. Native pipefish Entelurus aequoreus are promoted by the introduced seaweed Sargassum muticum in the northern Wadden Sea, North Sea. Aquatic Biology 3: 11–18.

    Article  Google Scholar 

  • R Core Team, 2015. R: A Language and Environment for Statistical Computing

  • Sarmento, V. C. & P. J. Santos, 2012. Species of Harpacticoida (Crustacea, Copepoda) from the phytal of Porto de Galinhas coral reefs, northeastern Brazil. Check List 8: 936–939.

    Article  Google Scholar 

  • Sibert, J. R., 1979. Detritus and juvenile salmon production in the Nanaimo estuary: II. Meiofauna available as food to juvenile chum salmon (Oncorhynchus keta). Journal of the Fisheries Board of Canada 36: 497–503.

    Article  Google Scholar 

  • Simenstad C. A., Thom R. M., & A. M. Olson (eds), 1997. Mitigation between regional transportation needs and preservation of eelgrass beds. Washington State Department of Transportation.

  • Simenstad C. A., Ramirez M., Burke J., Logsdon M., Shipman H., Tanner C., Toft J., Craig B., Davis C., Fung J., Bloch P., Fresh K., Myers D., Iverson E., Bailey A., Schlenger P., Kiblinger C., Myre P., Gerstel W., & A. MacLennan. 2011. Historical change of puget sound shorelines: puget sound nearshore ecosystem project change analysis. Puget Sound Nearshore Report No. 2011-01. Washington Department of Fish and Wildlife, Olympia, Washington, and U.S. Army Corps of Engineers, Seattle, Washington.

  • Struck, S. D., C. B. Craft, S. W. Broome, M. D. Sanclements & J. M. Sacco, 2004. Effects of bridge shading on estuarine marsh benthic invertebrate assemblage structure and function. Environmental Management 34: 99–111.

    Article  PubMed  Google Scholar 

  • Sutherland, T. F., R. W. Elner & J. D. O’Neill, 2013. Roberts Bank: ecological crucible of the Fraser River estuary. Progress in Oceanography 31: 171–180.

    Article  Google Scholar 

  • Thom, R. M., S. L. Southard, A. B. Borde & P. Stoltz, 2008. Light requirements for growth and survival of eelgrass (Zostera marina L.) in Pacific Northwest (USA) estuaries. Estuaries and Coasts 31: 969–980.

    Article  Google Scholar 

  • Toft, J. D., J. R. Cordell, C. A. Simenstad & L. A. Stamatiou, 2007. Fish distribution, abundance, and behavior along city shoreline types in Puget Sound. North American Journal of Fisheries Management 27: 465–480.

    Article  Google Scholar 

  • Toft, J. D., A. S. Ogston, S. M. Heerhartz, J. R. Cordell, & E. E. Flemer, 2013. Ecological response and physical stability of habitat enhancements along an urban armored shoreline. Ecological Engineering 57: 97–108.

  • Vasilas, B., J. Bowman, A. Rogerson, A. Chirnside & W. Ritter, 2011. Environmental impact of long piers on tidal marshes in Maryland-vegetation, soil, and marsh surface effects. Wetlands 31: 423–431.

    Article  Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, 4th ed. Springer, New York.

    Book  Google Scholar 

  • Villano, N. & R. M. Warwick, 1995. Meiobenthic assemblages associated with the seasonal cycle of growth and decay of Ulva rigida Agardh in the Palude Della Rosa, Lagoon of Venice. Estuarine, Coastal and Shelf Science 41: 181–194.

    Article  Google Scholar 

  • Webb, D. G., 1991. Effect of predation by juvenile Pacific salmon on marine harpacticoid copepods. I. Comparisons of patterns of copepod mortality with patterns of salmon consumption. Marine Ecology Progress Series 72: 25–36.

    Article  Google Scholar 

  • Zar, J. H., 2010. Biostatistical Analysis, 5th ed. Pearson, New York.

    Google Scholar 

  • Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgements

This research was funded by the Washington State Department of Transportation and Seattle Department of Transportation. S.H.M. was additionally supported by a National Science Foundation Graduate Research Fellowship (Grant DGE 1256082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffery R. Cordell.

Additional information

Handling editor: Jonne Kotta

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2017_3262_MOESM1_ESM.eps

Supplementary Fig. 1 NMDS of invertebrate taxa at Pier A with vectors indicating taxa with statistically significant gradients in ordination space (EPS 346 kb)

10750_2017_3262_MOESM2_ESM.eps

Supplementary Fig. 2 NMDS of invertebrate taxa at Pier B with vectors indicating taxa with statistically significant gradients in ordination space (EPS 312 kb)

10750_2017_3262_MOESM3_ESM.eps

Supplementary Fig. 3 NMDS of invertebrate taxa at Pier C with vectors indicating taxa with statistically significant gradients in ordination space (EPS 378 kb)

10750_2017_3262_MOESM4_ESM.eps

Supplementary Fig. 4 NMDS of invertebrate taxa at three urban piers with vectors indicating taxa with statistically significant gradients in ordination space (EPS 291 kb)

Supplementary material 5 (DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordell, J.R., Munsch, S.H., Shelton, M.E. et al. Effects of piers on assemblage composition, abundance, and taxa richness of small epibenthic invertebrates. Hydrobiologia 802, 211–220 (2017). https://doi.org/10.1007/s10750-017-3262-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3262-8

Keywords

Navigation