Skip to main content

Advertisement

Log in

Long-term changes in freshwater aquatic plant communities following extreme drought

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Prolonged periods of floodplain drying are becoming increasingly common due to severe drought events and the effects of river regulation. Using long-term monitoring, we assessed changes in freshwater plant community structure and composition before (2000–2002) and after (2010–2013) an extended drying period that resulted in two formerly persistent and three seasonally inundated wetlands in south-eastern Australia remaining continuously dry for durations ranging from 4.7 to 9.4 years. Plant community composition and structure changed significantly between pre- and post-dry stages in all wetlands. These changes were characterised by significant reductions in the percentage cover of aquatic species and the loss of formerly dominant aquatic species—in particular, the herbaceous perennial species, Eleocharis acuta R.Br. and E. sphacelata R.Br., and the aquatic grass, Pseudoraphis spinescens (R.Br.) Vickery. Small areas of E. acuta began to re-establish in the second and third years of wetland refilling, whereas E. sphacelata and P. spinescens did not re-establish and the percentage cover of aquatic species overall remained significantly below 2000–2002 levels throughout the 2010–2013 period. These results lend empirical support to our understanding of floodplain dynamics and resilience, and in particular, the loss of dominant perennial aquatic species and establishment of opportunistic annual species following extended wetland drying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aghakouchak, A., D. Feldman, M. J. Stewardson, J. D. Saphores, S. Grant & B. Sanders, 2014. Australia’s drought: lessons for California. Science 343: 1430–1431.

    Article  PubMed  Google Scholar 

  • Alexander, P., D. L. Nielsen & D. Nias, 2008. Response of wetland plant communities to inundation within floodplain landscapes. Ecological Management and Restoration 9: 187–195.

    Article  Google Scholar 

  • Amiaud, B. & B. Touzard, 2004. The relationships between soil seed bank, aboveground vegetation and disturbances in old embanked marshlands of western France. Flora 199: 25–35.

    Article  Google Scholar 

  • Anderson, M. J., 2005. Permutational Multivariate Analysis of Variance. Department of Statistics, University of Auckland, Auckland.

    Google Scholar 

  • Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. Permanova+ for Primer: Guide to Software and Statistical Methods. PRIMER-E, Plymouth.

    Google Scholar 

  • Australian Bureau of Meteorology, 2016. Climate data online. Australian Government. http://www.bom.gov.au/climate/data/. Accessed Mar 12, 2016.

  • Beisner, B. E., D. T. Haydon & K. Cuddington, 2003. Alternative stable states in ecology. Frontiers in Ecology and the Environment 1: 376–382.

    Article  Google Scholar 

  • Bino, G., S. A. Sisson, R. T. Kingsford, R. F. Thomas & S. Bowen, 2015. Developing state and transition models of floodplain vegetation dynamics as a tool for conservation decision-making: a case study of the Macquarie Marshes Ramsar wetland. Journal of Applied Ecology 52: 654–664.

    Article  Google Scholar 

  • Blindow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biology 30: 159–167.

    Article  Google Scholar 

  • Boedeltje, G., J. P. Bakker, R. M. Bekker, J. M. Van Groenendael & M. Soesbergen, 2003. Plant dispersal in a lowland stream in relation to occurrence and three specific life-history traits of the species in the species pool. Journal of Ecology 91: 855–866.

    Article  Google Scholar 

  • Bren, L. J., 1992. Tree invasion of an intermittent wetland in relation to changes in the flooding frequency of the River Murray, Australia. Australian Journal of Ecology 17: 395–408.

    Article  Google Scholar 

  • Brock, M. A., 2011. Persistence of seed banks in Australian temporary wetlands. Freshwater Biology 56: 1312–1327.

    Article  Google Scholar 

  • Brock, M. & M. Casanova, 1997. Plant life at the edge of wetlands: ecological responses to wetting and drying patterns. In Klomp, N. & I. Lunt (eds), Frontiers in Ecology: Building the Links. Elsevier Science Ltd., Oxford: 181–192.

    Google Scholar 

  • Brock, M. A., D. L. Nielsen, R. J. Shiel, J. D. Green & J. D. Langley, 2003. Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshwater Biology 48: 1207–1218.

    Article  Google Scholar 

  • Capon, S. J. & M. A. Brock, 2006. Flooding, soil seed bank dynamics and vegetation resilience of a hydrologically variable desert floodplain. Freshwater Biology 51: 206–223.

    Article  Google Scholar 

  • Capon, S. J. & M. A. Reid, 2016. Vegetation resilience to mega-drought along a typical floodplain gradient of the southern Murray–Darling Basin, Australia. Journal of Vegetation Science 27(5): 926–937.

    Article  Google Scholar 

  • Capon, S. J., A. J. J. Lynch, N. Bond, B. C. Chessman, J. Davis, N. Davidson, M. Finlayson, P. A. Gell, D. Hohnberg & C. Humphrey, 2015. Regime shifts, thresholds and multiple stable states in freshwater ecosystems; a critical appraisal of the evidence. Science of the Total Environment 534: 122–130.

    Article  CAS  PubMed  Google Scholar 

  • Carta, A., G. Bedini, J. V. Müller & R. J. Probert, 2013. Comparative seed dormancy and germination of eight annual species of ephemeral wetland vegetation in a Mediterranean climate. Plant Ecology 214: 339–349.

    Article  Google Scholar 

  • Chauhan, M. & B. Gopal, 2005. Vegetation structure and dynamics of a floodplain wetland along a subtropical regulated river. River Research and Applications 21: 513–534.

    Article  Google Scholar 

  • Chessman, B., 2003. Integrated Monitoring of Environmental Flows: State Summary Report 1998–2000. NSW Department of Infrastructure, Planning and Natural Resources, New South Wales.

    Google Scholar 

  • Chessman, B. & L. Hardwick, 2014. Water regimes and macroinvertebrate assemblages in floodplain wetlands of the Murrumbidgee River, Australia. Wetlands 34: 661–672.

    Article  Google Scholar 

  • Chiew, F. H. S., W. J. Young, W. Cai & J. Teng, 2011. Current drought and future hydroclimate projections in southeast Australia and implications for water resources management. Stochastic Environmental Research and Risk Assessment 25: 601–612.

    Article  Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 2001. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. PRIMER-E, Plymouth.

    Google Scholar 

  • Colloff, M. J. & D. S. Baldwin, 2010. Resilience of floodplain ecosystems in a semi-arid environment. The Rangeland Journal 32: 305–314.

    Google Scholar 

  • Colloff, M. J., K. A. Ward & J. Roberts, 2014. Ecology and conservation of grassy wetlands dominated by spiny mud grass Pseudoraphis spinescens in the southern Murray-Darling Basin, Australia. Aquatic Conservation 24: 238–255.

    Article  Google Scholar 

  • Combroux, I., G. Bornette, N. J. Willby & C. Amoros, 2001. Regenerative strategies of aquatic plants in disturbed habitats: the role of the propagule bank. Archiv für Hydrobiologie 152: 215–235.

    Google Scholar 

  • Côté, I. M. & E. S. Darling, 2010. Rethinking ecosystem resilience in the face of climate change. PLoS Biology 8: e1000438.

    Article  PubMed  PubMed Central  Google Scholar 

  • Department of Primary Industries Water, 2016. Real-time data. Department of Primary Industries Water. http://www.water.nsw.gov.au/realtime-data. Accessed June 5, 2015.

  • De Rosario-Martinez, H., 2015. phia: Post-Hoc Interaction Analysis. R package version 0.2–1. https://CRAN.R-project.org/package=phia.

  • Dijk, A. I., H. E. Beck, R. S. Crosbie, R. A. Jeu, Y. Y. Liu, G. M. Podger, B. Timbal & N. R. Viney, 2013. The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resources Research 49: 1040–1057.

    Article  Google Scholar 

  • Garssen, A. G., J. T. A. Verhoeven & M. B. Soons, 2014. Effects of climate-induced increases in summer drought on riparian plant species: a meta-analysis. Freshwater Biology 59: 1052–1063.

    Article  PubMed  PubMed Central  Google Scholar 

  • Green, D., J. Petrovic, P. Moss & M. Burrell, 2011. Water Resources and Management Overview: Murrumbidgee Catchment. NSW Office of Water, Sydney.

    Google Scholar 

  • Groffman, P., J. Baron, T. Blett, A. Gold, I. Goodman, L. Gunderson, B. Levinson, M. Palmer, H. Paerl, G. Peterson, N. L. Poff, D. Rejeski, J. Reynolds, M. Turner, K. Weathers & J. Wiens, 2006. Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9: 1–13.

    Article  Google Scholar 

  • Holling, C. S., 1973. Resilience and stability of ecological systems. Annual Review of Ecology, Evolution and Systematics 4: 1–23.

    Article  Google Scholar 

  • Kandasamy, J., D. Sounthararajah, P. Sivabalan, A. Chanan, S. Vigneswaran & M. Sivapalan, 2014. Socio-hydrologic drivers of the pendulum swing between agricultural development and environmental health: a case study from Murrumbidgee River basin, Australia. Hydrology and Earth System Sciences 18: 1027–1041.

    Article  Google Scholar 

  • Kingsford, R. T., 2000. Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecology 25: 109–127.

    Article  Google Scholar 

  • Kingsford, R. T., 2003. Ecological impacts and institutional and economic drivers for water resource development—a case study of the Murrumbidgee River. Australia Aquatic Ecosystem Health and Management 6: 69–79.

    Article  Google Scholar 

  • Kirby, M., F. Chiew, M. Mainuddin, B. Young, G. Podger & A. Close, 2013. Drought and climate change in the Murray-Darling Basin: a hydrological perspective. In Schwabe, K., J. Albiac, J. D. Connor, R. M. Hassan & L. M. González (eds), Drought in Arid and Semi-Arid Regions: A Multi-Disciplinary and Cross-Country Perspective. Springer, Netherlands: 281–299.

    Chapter  Google Scholar 

  • Lake, P. S., 2013. Resistance, resilience and restoration. Ecological Management and Restoration 14: 20–24.

    Article  Google Scholar 

  • Lite, S. J., K. J. Bagstad & J. C. Stromberg, 2005. Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. Journal of Arid Environments 63: 785–813.

    Article  Google Scholar 

  • McClanahan, T. R., S. D. Donner, J. A. Maynard, M. A. MacNeil, N. A. Graham, J. Maina, A. C. Baker, M. Beger, S. J. Campbell & E. S. Darling, 2012. Prioritizing key resilience indicators to support coral reef management in a changing climate. PloS ONE 7: e42884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen, D., K. Podnar, R. J. Watts & A. L. Wilson, 2013. Empirical evidence linking increased hydrologic stability with decreased biotic diversity within wetlands. Hydrobiologia 708: 81–96.

    Article  Google Scholar 

  • Ning, N. S. P., D. L. Nielsen & D. S. Baldwin, 2011. Assessing the potential for biotic communities to recolonise freshwater wetlands affected by sulfidic sediments. Freshwater Biology 56: 2299–2315.

    Article  CAS  Google Scholar 

  • Ozimek, T. & A. Kowalczewski, 1984. Long-term changes of the submerged macrophytes in eutrophic Lake Mikołajskie (North Poland). Aquatic Botany 19: 1–11.

    Article  Google Scholar 

  • Page, K. J., G. C. Nanson & D. M. Price, 1996. Chronology of Murrumbidgee River palaeochannels on the Riverine Plain, southeastern Australia. Journal of Quaternary Science 11: 311–326.

    Article  Google Scholar 

  • Palmer, M. A., C. A. Reidy Liermann, C. Nilsson, M. Flörke, J. Alcamo, P. S. Lake & N. Bond, 2008. Climate change and the world’s river basins: anticipating management options. Frontiers in Ecology and the Environment 6: 81–89.

    Article  Google Scholar 

  • Pimm, S. L., 1984. The complexity and stability of ecosystems. Nature 307: 321–326.

    Article  Google Scholar 

  • PlantNET, 2014. The NSW Plant Information Network System. Royal Botanic Gardens and Domain Trust,. http://plantnet.rbgsyd.nsw.gov.au. Accessed July 3, 2014.

  • R Development Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Reid, M. & S. Capon, 2011. Role of the soil seed bank in vegetation responses to environmental flows on a drought-affected floodplain. River Systems 19: 249–259.

    Article  Google Scholar 

  • Reid, M. A., M. C. Reid & M. C. Thoms, 2016. Ecological significance of hydrological connectivity for wetland plant communities on a dryland floodplain river, MacIntyre River, Australia. Aquatic Sciences 78: 139–158.

    Article  CAS  Google Scholar 

  • Rhazi, L., P. Grillas, M. Rhazi & J. C. Aznar, 2009. Ten-year dynamics of vegetation in a Mediterranean temporary pool in western Morocco. Hydrobiologia 634: 185–194.

    Article  Google Scholar 

  • Roberts, J. & F. Marston, 2011. Water Regime for Wetland and Floodplain Plants: A Source Book for the Murray-Darling Basin. National Water Commission, Canberra.

    Google Scholar 

  • Saintilan, N. & K. Rogers, 2015. Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings. New Phytologist 205: 1062–1070.

    Article  PubMed  Google Scholar 

  • Sainty, G. R. & S. W. L. Jacobs, 2003. Waterplants in Australia. Sainty and Associates, Sydney.

    Google Scholar 

  • Søndergaard, M., E. Jeppesen, T. L. Lauridsen, C. Skov, E. H. Van Nes, R. Roijackers, E. Lammens & R. Portielje, 2007. Lake restoration: successes, failures and long-term effects. Journal of Applied Ecology 44: 1095–1105.

    Article  Google Scholar 

  • Vicente-Serrano, S. M., C. Gouveia, J. J. Camarero, S. Beguería, R. Trigo, J. I. López-Moreno, C. Azorín-Molina, E. Pasho, J. Lorenzo-Lacruz & J. Revuelto, 2013. Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences USA 110: 52–57.

    Article  CAS  Google Scholar 

  • Vivian, L. M., R. C. Godfree, M. J. Colloff, C. E. Mayence & D. J. Marshall, 2014. Wetland plant growth under contrasting water regimes associated with river regulation and drought: implications for environmental water management. Plant Ecology 215: 997–1011.

    Article  Google Scholar 

  • Wood, S. & M. S. Wood, 2016. Package ‘mgcv’. R package version, 1.7–29.

  • Zedler, J. B. & S. Kercher, 2004. Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Critical Reviews in Plant Sciences 23: 431–452.

    Article  Google Scholar 

  • Zweig, C. L. & W. M. Kitchens, 2009. Multi-state succession in wetlands: a novel use of state and transition models. Ecology 90: 1900–1909.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the insightful comments and advice on the draft manuscript provided by Dr Bruce Chessman. Carmen Amos, Vanessa Cain and Rebecca Gibson were responsible for field surveys between 2010 and 2013. The authors respectfully acknowledge the traditional owners, their Elders past and present, their Nations of the Murray-Darling Basin and their cultural, social, environmental, spiritual and economic connection to their lands and waters. In particular, we respectfully acknowledge the Wiradjuri peoples—the traditional owners of the land on which this study is focused. Funding for this program was provided by NSW OEH (2010–2011) and the Commonwealth Environmental Water Office (2011–2013). Original survey design and pre-drought data collection were funded by the New South Wales Integrated Monitoring of Environmental Flows Program (IMEF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Ning.

Additional information

Handling editor: Chris Joyce

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1852 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wassens, S., Ning, N., Hardwick, L. et al. Long-term changes in freshwater aquatic plant communities following extreme drought. Hydrobiologia 799, 233–247 (2017). https://doi.org/10.1007/s10750-017-3219-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3219-y

Keywords

Navigation