Skip to main content
Log in

The effects of elevated atmospheric CO2 on freshwater periphyton in a temperate stream

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study examines the effects of elevated CO2 on the benthic biology of a temperate freshwater stream. We tested the hypotheses that elevated CO2 would increase periphyton biomass, alter elemental composition, and change community composition by increasing the frequency of algal taxa most limited by CO2 availability. Carbon dioxide was bubbled into reservoirs of stream water, increasing the ambient pCO2 by approximately 1100 ppm. The CO2-enriched water then flowed into artificial stream channels. Ceramic tiles were placed into the channels to allow for periphyton colonization. Dissolved inorganic carbon increased and pH decreased with added CO2. Measurements of biological parameters including periphyton biomass, algal C:N:P ratios, and community composition suggest that the periphyton were unaffected by the changes in stream water chemistry. We infer that rising atmospheric CO2 will impact stream water chemistry but that periphyton may not be the first to respond to these changes. Impacts to alkaline freshwater streams from elevated CO2 initially may be due to changes to terrestrial inputs that affect microbial decomposition and grazer activity, rather than through increases in periphyton carbon fixation. However, environmental characteristics of freshwater systems vary considerably, and additional studies are needed for accurate predictive modeling and monitoring of the effects of increasing atmospheric CO2 on freshwater streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • American Public Health Association, 2007. (2005) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington.

    Google Scholar 

  • Bates, B. C., Z. W. Kundzewicz, S. Wu & J. P. Palutikok (eds), 2008. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva: 210.

    Google Scholar 

  • Battin, T. J., S. Luyssaert, L. A. Kaplan, A. K. Aufdenkampe, A. Richter & L. J. Tranvik, 2009. The boundless carbon cycle. Nature Geoscience 2: 598–600.

    Article  CAS  Google Scholar 

  • Biggs, B. J. F., 1996. Patterns in Benthic Algae of Streams. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems, Aquatic Ecology. Academic Press, New York: 31–56.

    Chapter  Google Scholar 

  • Chinnasamy, S., B. Ramakrishnan, A. Bhatnagar, S. K. Goyal & K. C. Das, 2009. Carbon and nitrogen fixation by Anabaena fertilissima under elevated CO2 and temperature. Journal of Freshwater Ecology 24: 587–596.

    Article  CAS  Google Scholar 

  • Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. Mc Dowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 172–185.

    Article  Google Scholar 

  • Daoust, R. J. & D. L. Childers, 2004. Ecological effects of low-level phosphorus additions on two plant communities in a neotropical freshwater wetland ecosystem. Oecologia 141: 672–686.

    Article  PubMed  Google Scholar 

  • Descy, J. P., H. W. Higgins, D. J. Mackey, J. P. Hurley & T. M. Frost, 2000. Pigment ratios and phytoplankton assessment in northern Wisconsin lakes. Journal of Phycology 36: 274–286.

    Article  CAS  Google Scholar 

  • Diaz, M. M. & S. C. Maberly, 2009. Carbon-concentrating mechanisms in acidophilic algae. Phycologia 48: 77–85.

    Article  CAS  Google Scholar 

  • Duarte, C. M. & Y. T. Prairie, 2005. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8: 862–870.

    Article  CAS  Google Scholar 

  • Environmental Protection Agency, 2009. Technical Support Document for Endangerment and Cause or Contribute Findings for Greenhouse Gases under Section 202 (a) of the Clean Air Act. Environmental Protection Agency, Washington: 198.

    Google Scholar 

  • Environmental Protection Agency, 2010. National Water Program Strategy: Response to climate change: Key action update for 2010–2011. In: Office of Water (ed). Environmental Protection Agency, Washington, p 71.

  • Falkowski, P., R. J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Hogberg, S. Linder, F. T. Mackenzie, B. Moore, T. Pedersen, Y. Rosenthal, S. Seitzinger, V. Smetacek & W. Steffen, 2000. The global carbon cycle: a test of our knowledge of earth as a system. Science 290: 291–296.

    Article  CAS  PubMed  Google Scholar 

  • Feely, R. A., S. C. Doney & S. R. Cooley, 2009. Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22: 36–47.

    Article  Google Scholar 

  • Finlay, J. C., 2003. Controls of streamwater dissolved inorganic carbon dynamics in a forested watershed. Biogeochemistry 62: 231–252.

    Article  CAS  Google Scholar 

  • Gurevitch, J. & S. T. Chester, 1986. Analysis of repeated measures experiments. Ecology 67: 251–255.

    Article  Google Scholar 

  • Hargrave, C. W., K. P. Gary & S. K. Rosado, 2009. Potential effects of elevated atmospheric carbon dioxide on benthic autotrophs and consumers in stream ecosystems: a test using experimental stream mesocosms. Global Change Biology 15: 2779–2790.

    Article  Google Scholar 

  • Harvey, B. P., D. Gwynn-Jones & P. J. Moore, 2013. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecology and Evolution 3: 1016–1030.

    Article  PubMed  PubMed Central  Google Scholar 

  • Havens, K. E., T. L. East, S. J. Hwang, A. J. Rodusky, B. Sharfstein & A. D. Steinman, 1999. Algal responses to experimental nutrient addition in the littoral community of a subtropical lake. Freshwater Biology 42: 329–344.

    Article  CAS  Google Scholar 

  • Howard, A. G., 1998. Aquatic Environmental Chemistry. Oxford University Press, New York.

    Google Scholar 

  • Hu, H. & K. Gao, 2008. Impacts of CO2 enrichment on growth and photosynthesis in freshwater and marine diatoms. Chinese Journal of Oceanology and Limnology 26: 407–414.

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change, 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Pachauri, R. K. & A. Reisinger (eds). Geneva, p 104.

  • Johnson, V. R., C. Brownlee, R. E. M. Rickaby, M. Graziano, M. Milazzo & J. M. Hall-Spencer, 2013. Responses of marine benthic microalgae to elevated CO2. Marine Biology 160: 1813–1824.

    Article  CAS  Google Scholar 

  • Jones, J. I., J. W. Eaton & K. Hardwick, 2000. The influence of periphyton on boundary layer conditions: a pH microelectrode investigation. Aquatic Botany 67: 191–206.

    Article  Google Scholar 

  • Kahlert, M., 1998. C:N:P ratios of freshwater benthic algae. Ergebnisse der Limnologie 50: 105–114.

    Google Scholar 

  • Keatley, B. E., J. M. Blais, M. S. V. Douglas, I. Gregory-Eaves, M. L. Mallory, N. Michelutti & J. P. Smol, 2011. Historical seabird population dynamics and their effects on Arctic pond ecosystems: a multi-proxy paleolimnological study from Cape Vera, Devon Island, Arctic Canada. Fundamental and Applied Limnology 179: 51–66.

    Article  CAS  Google Scholar 

  • Kelly, J. J., A. Bansal, J. Winkelman, L. R. Janus, S. Hell, M. Wencel, P. Belt, K. A. Kuehn, S. T. Rier & N. C. Tuchman, 2010. Alteration of microbial communities colonizing leaf litter in a temperate woodland stream by growth of trees under conditions of elevated atmospheric CO2. Applied and Environmental Microbiology 76: 4950–4959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoll, L. B., M. J. Vanni, W. H. Renwick, E. K. Dittman & J. A. Gephart, 2013. Temperate reservoirs are large carbon sinks and small CO2 sources: results from high-resolution carbon budgets. Global Biogeochemical Cycles 27: 52–64.

    Article  CAS  Google Scholar 

  • Kociolek, J. P., R. L. Lowe & E. F. Stoermer, 2010. Algae of Northern Michigan and the Douglas Lake region. In Nadelhoffer, K. J., A. J. Hogg & B. A. Hazlett (eds), The Changing Environment of Northern Michigan: A Century of Science and Nature at the University of Michigan Biological Station. University of Michigan Press, Ann Arbor: 85–92.

    Google Scholar 

  • Kominoski, J. S., P. A. Moore, R. G. Wetzel & N. C. Tuchman, 2007. Elevated CO2 alters leaf-litter-derived dissolved organic carbon: effects on stream periphyton and crayfish feeding preference. Journal of the North American Benthological Society 26: 663–672.

    Article  Google Scholar 

  • Liehr, S. K., J. W. Eheart & M. T. Suidan, 1988. A modeling study of the effect of pH on carbon limited algal biofilms. Water Research 22: 1033–1041.

    Article  CAS  Google Scholar 

  • Low-Decarie, E., G. F. Fussmann & G. Bell, 2011. The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Global Change Biology 17: 2525–2535.

    Article  Google Scholar 

  • Lowe, R. L., R. W. Pillsbury & A. J. Schrank, 2010. Aquatic Ecosystems of Northern Michigan. In Nadelhoffer, K. J., A. J. Hogg & B. A. Hazlett (eds), The Changing Environment of Northern Michigan: A Century of Science and Nature at the University of Michigan Biological Station. University of Michigan Press, Ann Arbor: 50–60.

    Google Scholar 

  • Mackey, M. D., D. J. Mackey, H. W. Higgins & S. W. Wright, 1996. CHEMTAX - A program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Marine Ecology Progress Series 144: 265–283.

    Article  CAS  Google Scholar 

  • Meyer, J. & U. Riebesell, 2015. Reviews and syntheses: responses of coccolithophores to ocean acidification: a meta-analysis. Biogeosciences 12: 1671–1682.

    Article  Google Scholar 

  • Millero, F. J., T. B. Graham, F. Huang, H. Bustos-Serrano & D. Pierrot, 2006. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Marine Chemistry 100: 80–94.

    Article  CAS  Google Scholar 

  • National Atmospheric Deposition Program, 2013. Precipitation Data for Site MI09. National Atmospheric Deposition Program. Accessed [5/15/2013] http://nadp.sws.uiuc.edu/siteOps/ppt/default.aspx

  • Pan, Y. D. & R. L. Lowe, 1994. Independent and interactive effects of nutrients and grazers on benthic algal community structure. Hydrobiologia 291: 201–209.

    Article  Google Scholar 

  • Passy, S. I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86: 171–178.

    Article  Google Scholar 

  • Passy, S. I., 2008. Continental diatom biodiversity, in stream benthos declines as more nutrients become limiting. Proceedings of the National Academy of Sciences of the United States of America 105: 9663–9667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passy, S. I. & C. A. Larson, 2011. Succession in stream biofilms is an environmentally driven gradient of stress tolerance. Microbial Ecology 62: 414–424.

    Article  CAS  PubMed  Google Scholar 

  • Pierrot, D. P., D. E. Lewis & D. W. R. Wallace, 2006. MS Excel Program Developed for CO2 System Calculations ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge.

    Google Scholar 

  • Piggott, J. J., R. K. Salis, G. Lear, C. R. Townsend & C. D. Matthaei, 2015. Climate warming and agricultural stressors interact to determine stream periphyton community composition. Global Change Biology 21: 206–222.

    Article  PubMed  Google Scholar 

  • Pilson, M. E. Q., 2013. An Introduction to the Chemistry of the Sea, 2nd ed. Cambridge University Press, New York.

    Google Scholar 

  • Potvin, C., M. J. Lechowicz & S. Tardif, 1990. The statistical-analysis of ecophysiological response curves obtained from experiments involving repeated measures. Ecology 71: 1389–1400. doi:10.2307/1938276.

    Article  Google Scholar 

  • R Development Core Team, 2009. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Raven, J. A. & J. Beardall, 2014. CO2 concentrating mechanisms and environmental change. Aquatic Botany 118: 24–37.

    Article  CAS  Google Scholar 

  • Redfield, A. C., 1958. The biological control of chemical factors in the environment. American Scientist 46: 205–221.

    CAS  Google Scholar 

  • Richardson, T. L., E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl & H. L. MacIntyre, 2010. Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser. Water Research 44: 2461–2472.

    Article  CAS  PubMed  Google Scholar 

  • Riebesell, U., 2004. Effects of CO2 enrichment on marine phytoplankton. Journal of Oceanography 60: 719–729.

    Article  CAS  Google Scholar 

  • Rier, S. T., N. C. Tuchman & R. G. Wetzel, 2005. Chemical changes to leaf litter from trees grown under elevated CO2 and the implications for microbial utilization in a stream ecosystem. Canadian Journal of Fisheries and Aquatic Sciences 62: 185–194.

    Article  CAS  Google Scholar 

  • Rott, E. & S. C. Schneider, 2014. A comparison of ecological optima of soft-bodied benthic algae in Norwegian and Austrian rivers and consequences for river monitoring in Europe. Science of the Total Environment 475: 180–186.

    Article  CAS  PubMed  Google Scholar 

  • Sabater, S., H. Guasch, A. Romani & I. Munoz, 2002. The effect of biological factors on the efficiency of river biofilms in improving water quality. Hydrobiologia 469: 149–156.

    Article  CAS  Google Scholar 

  • Sarmento, H. & J.-P. Descy, 2008a. Use of marker pigments and functional groups for assessing the status of phytoplankton assemblages in lakes. Journal of Applied Phycology 20: 1001–1011.

    Article  Google Scholar 

  • Sarmento, H. & J. P. Descy, 2008b. Use of marker pigments and functional groups for assessing the status of phytoplankton assemblages in lakes. Journal of Applied Phycology 20: 1001–1011.

    Article  Google Scholar 

  • Saulnier-Talbot, E., I. Gregory-Eaves, K. G. Simpson, J. Efitre, T. E. Nowlan, Z. E. Taranu & L. J. Chapman, 2014. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes. PLoS ONE 9: e86561.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schippers, P., M. Lurling & M. Scheffer, 2004. Increase of atmospheric CO2 promotes phytoplankton productivity. Ecology Letters 7: 446–451.

    Article  Google Scholar 

  • Schluter, L., T. L. Lauridsen, G. Krogh & T. Jorgensen, 2006. Identification and quantification of phytoplankton groups in lakes using new pigment ratios – a comparison between pigment analysis by HPLC and microscopy. Freshwater Biology 51: 1474–1485.

    Article  Google Scholar 

  • Schneider, S. & E. A. Lindstrom, 2009. Bioindication in Norwegian rivers using non-diatomaceous benthic algae: the acidification index periphyton (AIP). Ecological Indicators 9: 1206–1211.

    Article  CAS  Google Scholar 

  • Schneider, S. C., M. Kahlert & M. G. Kelly, 2013. Interactions between pH and nutrients on benthic algae in streams and consequences for ecological status assessment and species richness patterns. Science of the Total Environment 444: 73–84.

    Article  CAS  PubMed  Google Scholar 

  • Scott, J. T. & R. D. Doyle, 2006. Coupled photosynthesis and heterotrophic bacterial biomass production in a nutrient-limited wetland periphyton mat. Aquatic Microbial Ecology 45: 69–77.

    Article  Google Scholar 

  • Seavy, N. E., T. Gardali, G. H. Golet, F. T. Griggs, C. A. Howell, R. Kelsey, S. L. Small, J. H. Viers & J. F. Weigand, 2009. Why climate change makes riparian restoration more important than ever: recommendations for practice and research. Ecological Restoration 27: 330–338.

    Article  Google Scholar 

  • Soetaert, K., K. Van den Meersche & D. van Oevelen, 2009. limSolve: solving linear inverse models. R-package version 1(5): 1.

    Google Scholar 

  • Spijkerman, E., 2008. What physiological acclimation supports increased growth at high CO2 conditions? Physiologia Plantarum 133: 41–48.

    Article  CAS  PubMed  Google Scholar 

  • Steinman, A. D., P. J. Mulholland, A. V. Palumbo, D. L. Deangelis & T. E. Flum, 1992. Lotic ecosystem response to a chlorine disturbance. Ecological Applications 2: 341–355.

    Article  PubMed  Google Scholar 

  • Stelzer, R. S. & G. A. Lamberti, 2001. Effects of N: P ratio and total nutrient concentration on stream periphyton community structure, biomass, and elemental composition. Limnology and Oceanography 46: 356–367.

    Article  Google Scholar 

  • Stevenson, R. J., 1996. An Introduction to Algal Ecology in Freshwater Benthic Habitats. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Aquatic Ecology Series. Academic Press, New York.

    Google Scholar 

  • Stevenson, R. J. & L. Bahls, 1999. Periphyton Protocols. In Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling (eds), Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, 2nd ed. US Environmental Protection Agency, Office of Water, Washington: 6.1–6.23.

    Google Scholar 

  • Stevenson, R. J., S. T. Rier, C. M. Riseng, R. E. Schultz & M. J. Wiley, 2006. Comparing effects of nutrients on algal biomass in streams in two regions with different disturbance regimes and with applications for developing nutrient criteria. Hydrobiologia 561: 149–165.

    Article  CAS  Google Scholar 

  • Tranvik, L. J., J. A. Downing, J. B. Cotner, S. A. Loiselle, R. G. Striegl, T. J. Ballatore, P. Dillon, K. Finlay, K. Fortino, L. B. Knoll, P. L. Kortelainen, T. Kutser, S. Larsen, I. Laurion, D. M. Leech, S. L. McCallister, D. M. McKnight, J. M. Melack, E. Overholt, J. A. Porter, Y. Prairie, W. H. Renwick, F. Roland, B. S. Sherman, D. W. Schindler, S. Sobek, A. Tremblay, M. J. Vanni, A. M. Verschoor, E. von Wachenfeldt & G. A. Weyhenmeyer, 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54: 2298–2314.

    Article  CAS  Google Scholar 

  • Tuchman, N. C., R. G. Wetzel, S. T. Rier, K. A. Wahtera & J. A. Teeri, 2002. Elevated atmospheric CO2 lowers leaf litter nutritional quality for stream ecosystem food webs. Global Change Biology 8: 163–170.

    Article  Google Scholar 

  • Urabe, J. & N. Waki, 2009. Mitigation of adverse effects of rising CO2 on a planktonic herbivore by mixed algal diets. Global Change Biology 15: 523–531.

    Article  Google Scholar 

  • Verschoor, A. M., M. A. Van Dijk, J. Huisman & E. Van Donk, 2013. Elevated CO2 concentrations affect the elemental stoichiometry and species composition of an experimental phytoplankton community. Freshwater Biology 58: 597–611.

    Article  CAS  Google Scholar 

  • Webb, P. W. & A. J. Schrank, 2010. Biological Station Fishes. In Nadelhoffer, K. J., A. J. Hogg & B. A. Hazlett (eds), The Changing Environment of Northern Michigan: A Century of Science and Nature at the University of Michigan Biological Station. University of Michigan Press, Ann Arbor: 132–142.

    Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press, San Diego.

    Google Scholar 

  • Weyhenmeyer, G. A., P. Kortelainen, S. Sobek, R. Müller & M. Rantakari, 2012. Carbon dioxide in boreal surface waters: a comparison of lakes and streams. Ecosystems 15: 1295–1307.

    Article  Google Scholar 

  • Xia, J. R. & K. S. Gao, 2005. Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae. Journal of Integrative Plant Biology 47: 668–675.

    Article  CAS  Google Scholar 

  • Zeebe, R. E. & D. Wolf-Gladrow, 2001. CO2 in Seawater: Equilibrium, Kinetics. Isotopes, Elsevier.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the University of South Florida Integrative Biology Department, the Biosphere Atmosphere Research and Training Program (BART) funded by the National Science Foundation through the University of Michigan, and the University of Michigan Biological Station. We thank Robert H. Byrne for his generosity in sharing his expertise to assist with methods development and with CO2 chemistry calculations; Michael Grant, for his analytical chemistry expertise; Robert Vande Kopple for his biological knowledge of the Maple River; and Troy Keller, for guidance at the Stream Research Facility. We thank Rex L. Lowe and Patrick Kociolek for sharing algal identification materials specific to the region. We thank Irene Gregory-Eaves, McGill University, for use of the Fluoroprobe and HPLC; Thomas L. Crisman, University of South Florida, for use of the Leica microscope; and Peter R. Girguis, Harvard University, for loaning us GFC Mass Flow Controllers, which were valuable during methods development. We thank Michael S. Brown for assistance throughout this project, and Madison Brown and Morgan Gmytruk for assistance in the field. We also thank the anonymous reviewers, whose suggestions improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry-René W. Brown.

Additional information

Handling editor: Mariana Meerhoff

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, TR.W., Low-Décarie, E., Pillsbury, R.W. et al. The effects of elevated atmospheric CO2 on freshwater periphyton in a temperate stream. Hydrobiologia 794, 333–346 (2017). https://doi.org/10.1007/s10750-017-3108-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3108-4

Keywords

Navigation