Skip to main content
Log in

Chironomidae of the Holarctic region: a comparison of ecological and functional traits between North America and Europe

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Chironomidae (Diptera) are widespread, abundant, diverse and ubiquitous, and include genera and species that are distributed across the Holarctic region. However, the geographical barriers between continents should have resulted in intraspecific population differentiation with reflection on individual biological and ecological traits. Our aim was to test for potential differences in Chironomidae species/genus and traits between the Nearctic and Palearctic regions. We compared the Chironomidae trait information gathered in two databases; one database was developed in Europe and the other in North America. Common genera and species of both databases were selected, and the common traits were adjusted into the same trait categories. Data were transformed into presence/absence and divided into Eltonian (biological/functional) and Grinnellian (ecological) traits. Common genera and common species were analyzed using Fuzzy correspondence analysis (FCA). Differences between databases occur for all trait domains. Yet, Eltonian traits showed lower level of concordance than Grinnellian traits at the species level. Different biological characteristics in the Nearctic and Palearctic regions may indicate that Chironomidae have different adaptions to similar ecological environments due to intraspecific variability or even trait plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert, C. H., F. de Bello, I. Boulangeat, G. Pellet, S. Lavorel & W. Thuiller, 2012. On the importance of intraspecific variability for the quantification of functional diversity. Oikos 121: 116–126.

    Article  Google Scholar 

  • Andersen, T., P. S. Cranston & J. H. Epler (eds), 2013. Chironomidae of the Holartic Region. Keys and diagnoses, Larvae. Insect Systematics and Evolution Supplement 66. Lund, Sweden.

  • Armitage, P., P. S. Cranston & L. C. V. Pinder (eds), 1995. The Chironomidae. The Biology and Ecology of Non-biting Midges. Chapman & Hall, London.

    Google Scholar 

  • Ashe, P., D. A. Murray & F. Reiss, 1987. The zoogeographical distribution of Chironomidae (Insecta: Diptera). Annales de Limnologie 23: 27–60.

    Article  Google Scholar 

  • Baird, D. J., C. J. O. Baker, R. B. Brua, M. Hajibabaei, K. McNicol, T. J. Pascoe & D. de Zwart, 2011. Toward a knowledge infrastructure for traits-based ecological risk assessment. Integrated Environmental Assessment and Management 7: 209–215.

    Article  PubMed  Google Scholar 

  • Bêche, L. A. & B. Statzner, 2009. Richness gradients of stream invertebrates across the USA: Taxonomy- and trait-based approaches. Biodiversity and Conservation 18: 3909–3930.

    Article  Google Scholar 

  • Beck Jr., W. M., 1977. Environmental Requirements and Pollution Tolerance of Common Freshwater Chironomidae, Report EPA-600/4-77-024. USEPA, Washington, DC.

    Google Scholar 

  • Bertrand, J. A. M., B. Delahaie, Y. X. C. Bourgeois, T. Duval, R. García-Jiménez, J. Cornuault, B. Pujol, C. Thébaud & B. Milá, 2016. The role of selection and historical factors in driving population differentiation along an elevational gradient in an island bird. Journal of Evolutionary Biology 29: 824–836.

    Article  CAS  PubMed  Google Scholar 

  • Bolnick, D., P. Amarasekare, M. S. Araújo, R. Bürger, J. M. Levine, M. Novak, V. H. W. Rudolf, S. J. Schreiber, M. C. Urban & D. A. Vasseur, 2011. Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution 26: 183–192.

    Article  Google Scholar 

  • Butler, M. G., I. I. Kiknadze, V. V. Golygina, J. Martin, A. G. Istomina, W. F. Wülker, J. E. Sublette & M. F. Sublette, 1999. Cytogenetic differentiation between Palearctic and Nearctic populations of Chironomus plumosus L. (Diptera, Chironomidae). Genome 42: 797–815.

    Article  Google Scholar 

  • Carmona, C. P., F. de Bello, N. W. H. Mason & J. Lepš, 2016. Traits without borders: Integrating functional diversity across scales. Trends in Ecology & Evolution 31: 382–394.

    Article  Google Scholar 

  • Chessel, D., A. B. Dufour & J. Thioulouse, 2004. The ade4 package – I: One-table methods. R News 4: 5–10.

    Google Scholar 

  • Chevenet, F., S. Dolédec & D. Chessel, 1994. A Fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31: 295–309.

    Article  Google Scholar 

  • Cranston, P. S., 1995. Introduction. In Armitage, P., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae. The Biology and Ecology of Non-biting Midges. Chapman & Hall, London: 1–7.

    Google Scholar 

  • Cranston, P. S. & D. R. Oliver, 1987. Problems in Holarctic chironomid biogeography. Entomologica Scandinavica Supplement 29: 51–56.

    Google Scholar 

  • Culp, J. M., D. G. Armanini, M. J. Dunbar, J. M. Orlofske, N. L. Poff, A. I. Pollard, A. G. Yates & G. C. Hose, 2010. Incorporating traits in aquatic biomonitoring to enhance causal diagnosis and prediction. Integrated Environmental Assessment and Management 7: 187–197.

    Article  PubMed  Google Scholar 

  • Delettre, Y. R., 1988. Chironomid wing length, dispersal ability and habitat predictabitity. Ecography 11: 166–170.

    Article  Google Scholar 

  • Dolédec, S. & D. Chessel, 1987. Rythmes saisonniers et composantes stationnelles en milieu aquatique. I. – Description d’un plan d’observation complet par projection de variables. Acta Oecologica Oecologia Generalis 8: 403–426.

    Google Scholar 

  • Dolédec, S. & B. Statzner, 2008. Invertebrate traits for the biomonitoring of large European rivers: An assessment of specific types of human impact. Freshwater Biology 53: 617–634.

    Article  Google Scholar 

  • Dray, S. & A. B. Dufour, 2007. The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1–20.

    Article  Google Scholar 

  • Dray, S., A. B. Dufour & D. Chessel, 2007. The ade4 package – II: two-table and K-table methods. R News 7: 47–52.

    Google Scholar 

  • Drotz, M. K., T. Brodin & A. N. Nilsson, 2015. Changing names with changed address: Integrated taxonomy and species delimitation in the Holarctic colymbetes paykulli group (Coleoptera: Dytiscidae). PLoS ONE 10: e0143577.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feio, M. J., S. Dolédec & M. A. S. Graça, 2015. Human disturbance affects the long-term spatial synchrony of freshwater invertebrate communities. Environmental Pollution 196: 300–308.

    Article  CAS  PubMed  Google Scholar 

  • Ferrington Jr., L. C., 2008. Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia 595: 447–455.

    Article  Google Scholar 

  • Gayraud, S., B. Statzner, P. Bady, A. Haybachp, F. Schöll, P. Usseglio-Polatera & M. Bacchi, 2003. Invertebrate traits for the biomonitoring of large European rivers: An initial assessment of alternative metrics. Freshwater Biology 48: 2045–2064.

    Article  Google Scholar 

  • Griffiths, H. M., J. Louzada, R. D. Bardgett & J. Barlow, 2016. Assessing the importance of intraspecific variability in dung beetle functional traits. PLoS ONE 11: e0145598.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunderina, L. I., I. I. Kiknadze, A. G. Istomina & M. Butler, 2009. Geographic differentiation of genomic DNA of Chironomus plumosus (Diptera, Chironomidae) in natural holarctic populations. Russian Journal of Genetics 45: 54–62.

    Article  CAS  Google Scholar 

  • Guryev, V. P. & A. G. Blinov, 2002. Phylogenetic relationships among holarctic populations of Chironomus entis and Chironomus plumosus in view of possible horizontal transfer of mitochondrial genes. Russian Journal of Genetics 38: 239–243.

    Article  CAS  Google Scholar 

  • Hochkirch, A., J. Deppermann & J. Gröninga, 2008. Phenotypic plasticity in insects: The effects of substrate color on the coloration of two ground-hopper species. Evolution & Development 10: 350–359.

    Article  Google Scholar 

  • Kavar, T., P. Pavlovčič, S. Sušnik, V. Meglič & M. Virant-Doberlet, 2006. Genetic differentiation of geographically separated populations of the southern green stink bug Nezara viridula (Hemiptera: Pentatomidae). Bulletin of Entomological Research 96: 117–128.

    Article  CAS  PubMed  Google Scholar 

  • Kiknadze, I. I., M. G. Butler, K. G. Aimanova, L. I. Gunderina & J. K. Cooper, 1996. Geographic variation in the polytene chromosome banding pattern of the Holarctic midge Chironomus (Camptochironomus) tentans (Fabricius). Canadian Journal of Zoology 74: 171–191.

    Article  Google Scholar 

  • Lecocq, T., S. Dellicour, D. Michez, P. Lhomme, M. Vanderplanck, I. Valterová, J.-Y. Rasplus & P. Rasmont, 2013. Scent of a break-up: Phylogeography and reproductive trait divergences in the red-tailed bumblebee (Bombus lapidarius). BMC Evolutionary Biology 13: 263.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindeberg, B., 1980. Taxonomic problems in Holarctic Chironomidae (Diptera). In Murray, D. A. (ed.), Chironomidae. Ecology, Systematics, Cytology and Physiology, 1st ed. Pergamon Press, Oxford: 93–96.

    Google Scholar 

  • Luo, Y., A. Widmer & S. Karrenberg, 2015. The roles of genetic drift and natural selection in quantitative trait divergence along an altitudinal gradient in Arabidopsis thaliana. Heredity 114: 220–228.

    Article  CAS  PubMed  Google Scholar 

  • Martin, J., V. Guryev & A. Blinov, 2002. Population variability in Chironomus (Camptochironomus) species (Diptera, Nematocera) with a Holarctic distribution: Evidence of mitochondrial gene flow. Insect Molecular Biology 11: 387–397.

    Article  CAS  PubMed  Google Scholar 

  • Marziali, L., D. G. Armanini, M. Cazzola, S. Erba, E. Toppi, A. Buffagni & B. Rossaro, 2010. Responses of chironomid larvae (Insecta Diptera) to ecological quality in mediterranean river mesohabitats (South Italy). River Research and Applications 26: 1036–1105.

    Google Scholar 

  • McLachlan, A., 1985. The relationship between habitat predictability and wing length in midges (Chironomidae). Oikos 44: 391–397.

    Article  Google Scholar 

  • McLachlan, A. J. & M. A. Cantrell, 1976. Sediment development and its influence on the distribution and tube structure of Chironomus plumosus L. (Chironomidae, Diptera) in a new impoundment. Freshwater Biology 6: 437–443.

    Article  Google Scholar 

  • Moczek, A. P., 2010. Phenotypic plasticity and diversity in insects. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 593–603.

    Article  Google Scholar 

  • Moller Pillot, H. K. M., 2009. Chironomidae Larvae. Biology and Ecology of the Chironomini. KNNV Publishing, Zeist.

    Google Scholar 

  • Nijhout, H. F., 2003. Development and evolution of adaptive polyphenisms. Evolution & Development 5: 9–18.

    Article  Google Scholar 

  • Oliver, D. R. & M. E. Roussel, 1983. The Genera of Larval Midges of Canada: Diptera, Chironomidae, Insects and Arachnids of Canada Handbook Series, Part 11. Canadian Government Publishing Centre, Ottawa.

    Google Scholar 

  • Petchey, O. L. & K. J. Gaston, 2006. Functional diversity: Back to basics and looking forward. Ecology Letters 9: 741–758.

    Article  PubMed  Google Scholar 

  • Pinder, L. C. V., 1983. The larvae of Chironomidae (Diptera) of the Holarctic region. Introduction. In Wiederholm, T. (ed), Chironomidae of the Holarctic Region. Keys and Diagnoses, Part I, Larvae, Supplement 19. Entomologica Scandinavica, Östergötland, Motala: 7–10.

  • R Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria [available on internet at https://www.R-project.org].

  • Resh, V. H., A. G. Hildrew, B. Statzner & C. R. Townsend, 1994. Theoretical habitat templets, species traits, and species richness: A synthesis of long-term ecological research on the Upper Rhône River in the context of concurrently developed ecological theory. Freshwater Biology 31: 539–554.

    Article  Google Scholar 

  • Richoux, P., 1994. Theoretical habitat templets, species traits, and species richness: aquatic Coleoptera in the Upper Rhône River and its floodplain. Freshwater Biology 31: 377–395.

    Article  Google Scholar 

  • Roskosch, A., N. Hette, M. Hupfer & J. Lewandowski, 2012. Alteration of Chironomus plumosus ventilation activity and bioirrigation-mediated benthic fluxes by changes in temperature, oxygen concentration, and seasonal variations. Freshwater Science 31: 269–281.

    Article  Google Scholar 

  • Saether, O. A. & M. Spies, 2013. Fauna Europaea: Chironomidae. In: Beuk, P. & T. Pape (eds), Fauna Europaea: Diptera. Fauna Europaea Version 2.6.2 [available on internet at http://www.faunaeur.org/]. Accessed 1 August of 2016.

  • Schmera, D., J. Podani, J. Heino, T. Erős & N. L. Poff, 2015. A proposed unified terminology of species traits in stream ecology. Freshwater Science 34: 823–830.

    Article  Google Scholar 

  • Schmidt-Kloiber, A., & D. Hering, 2015. www.freshwaterecology.info – An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological Indicators 53: 271–282.

    Article  Google Scholar 

  • Serra, S. R. Q., F. Cobo, M. A. S. Graça, S. Dolédec & M. J. Feio, 2016. Synthesising the trait information of European Chironomidae (Insecta: Diptera): Toward a new database. Ecological indicators 61: 282–292.

    Article  Google Scholar 

  • Snell-Rood, E., R. Cothran, A. Espeset, P. Jeyasingh, S. Hobbie & N. I. Morehouse, 2015. Life-history evolution in the anthropocene: Effects of increasing nutrients on traits and trade-offs. Evolutionary Applications 8: 635–649.

    Article  PubMed  PubMed Central  Google Scholar 

  • Statzner, B. & L. A. Bêche, 2010. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology 55: 80–119.

    Article  Google Scholar 

  • Statzner, B., V. H. Resh & A. L. Roux, 1994. The synthesis of long-term ecological research in the context of concurrently developed ecological theory: Design of a research strategy for the Upper Rhône River and its floodplain. Freshwater Biology 31: 253–263.

    Article  Google Scholar 

  • Statzner, B., B. Bis, S. Dolédec & P. Usseglio-Polatera, 2001. Perspectives for biomonitoring at large spatial scales: A unified measure for the functional composition of invertebrate communities in European running waters. Basic and Applied Ecology 2: 73–85.

    Article  Google Scholar 

  • Statzner, B., S. Dolédec & B. Hugueny, 2004. Biological trait composition of European stream invertebrate communities: Assessing the effects of various trait filter types. Ecography 27: 470–488.

    Article  Google Scholar 

  • Stoks, R., J. L. Nystrom, M. L. May & M. A. McPeek, 2005. Parallel evolution in ecological and reproductive trait to produce cryptic damselfly species across the Holarctic. Evolution 59: 1976–1988.

    Article  PubMed  Google Scholar 

  • Tachet, H., P. Usseglio-Polatera & C. Roux, 1994. Theoretical habitat templets, species traits, and species richness: Trichoptera in the Upper Rhône River and its floodplain. Freshwater Biology 31: 397–415.

    Article  Google Scholar 

  • Ter Braak, C. F. J., 1988. Partial Canonical Correspondence Analysis. In Bock, H. H. (ed.), Classification and Related Methods of Data Analysis. North-Holland, Amsterdam: 551–558.

    Google Scholar 

  • Thioulouse, J., D. Chessel, S. Dolédec & J. M. Olivier, 1997. ADE-4: A multivariate analysis and graphical display software. Statistics and Computing 7: 75–83.

    Article  Google Scholar 

  • Tokeshi, M., 1995. Species Interactions and Community Structure. In Armitage, P., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae. The biology and ecology of non-biting midges. Chapman & Hall, London: 297–335.

    Google Scholar 

  • USEPA, 2012. Freshwater Biological Traits Database (EPA/600/R-11/038F). Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Usseglio-Polatera, P. & H. Tachet, 1994. Theoretical habitat templets, species traits, and species richness: Plecoptera and Ephemeroptera in the Upper Rhône River and its floodplain. Freshwater Biology 31: 357–375.

    Article  Google Scholar 

  • Usseglio-Polatera, P., 1994. Theoretical habitat templets, species traits, and species richness: Aquatic insects in the Upper Rhône River and its floodplain. Freshwater Biology 31: 417–437.

    Article  Google Scholar 

  • Vallenduuk, H. J. & H. K. M. Moller Pillot, 2007. Chironomidae larvae – general ecology and Tanipodinae. KNNV Publishing, Zeist.

    Google Scholar 

  • Van Kleef, H., W. C. E. P. Verberk, F. F. P. Kimenai, G. Van der Velde & R. S. E. W. Leuven, 2015. Natural recovery and restoration of acidified shallow soft-water lakes: Successes and bottlenecks revealed by assessing life-history strategies of chironomid larvae. Basic and Applied Ecology 16: 325–334.

    Article  Google Scholar 

  • Vieira, N. K. M., N. L. Poff, D. M. Carlisle, S. R. Moulton II, M. L. Koski & B. C. Kondratieff, 2006. A Database of Lotic Invertebrate Traits for North America. U.S. Geological Survey Data Series 187: 1–19 [available on internet at http://pubs.usgs.gov/ds/ds187/]. Accessed at 1 August 2016.

  • Violle, C., B. J. Enquist, B. J. McGill, L. Jiang, C. H. Albert, C. Hulshof, V. Jung & J. Messier, 2012. The return of the variance: Intraspecific variability in community ecology. Trends in Ecology & Evolution 27: 244–252.

    Article  Google Scholar 

  • Wiederholm, T. (ed.), 1983. Chironomidae of the Holarctic Region. Keys and Diagnoses, Part I, Larvae. Entomologica Scandinavica Supplement 19. Östergötland, Motala, Sweden.

  • Yuan, L. L., 2006. Estimation and Application of Macroinvertebrate Tolerance Values, Report EPA/600/P-04/116F. USEPA, Washington, DC.

    Google Scholar 

  • Zhou, Y.-B., C. Newman, W.-T. Xu, C. D. Buesching, A. Zalewski, Y. Kaneko, D. W. Macdonald & Z.-Q. Xie, 2011. Biogeographical variation in the diet of Holarctic martens (genus Martes, Mammalia: Carnivora: Mustelidae): Adaptive foraging in generalists. Journal of Biogeography 38: 137–147.

    Article  Google Scholar 

Download references

Acknowledgements

This study was possible through the strategic project UID/MAR/04292/2013 granted to MARE, also through a PhD scholarship (SFRH/BD/80188/2011); both funded by the Portuguese Foundation for Science and Technology (FCT). The research benefited from the cotutelage between the University of Coimbra and the University of Lyon 1, and the cooperation between the MARE, University of Coimbra, Portugal, and the LEHNA – Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, University of Lyon, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sónia R. Q. Serra.

Additional information

Handling editor: Checo Colón-Gaud

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serra, S.R.Q., Graça, M.A.S., Dolédec, S. et al. Chironomidae of the Holarctic region: a comparison of ecological and functional traits between North America and Europe. Hydrobiologia 794, 273–285 (2017). https://doi.org/10.1007/s10750-017-3102-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3102-x

Keywords

Navigation