Skip to main content
Log in

Nesting substrate and water-level fluctuations influence wading bird nesting patterns in a large shallow eutrophic lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Water-level fluctuations determine the ecological function of shallow lakes and wetlands. Wading birds (Pelecaniformes and Ciconiiformes) are reliable indicators of the biotic conditions at multiple trophic levels, thereby reflecting an ecosystem response to water-level changes. We used a historic nesting record dating back to 1977 and an information-theoretic approach to identify environmental factors that were most important for predicting the number of wading bird nests at Lake Okeechobee, a highly managed reservoir in Florida. The three top models accounted for 71% of the Akaike weight. Model variables included area of willow (Salix spp.) for nesting substrate, maximum depth of the lake on January 1, and foraging habitat availability over the nesting season. Collectively, the results suggest that the number of nests was greatest when area of nesting substrate was high and water levels were moderate (3.9–4.4 m). Nesting substrate was greatest when water levels fell below 3.9 m at least once every three years. Nest numbers dropped when either nesting substrate or foraging habitat was limited. This study identifies key hydrological parameters that support large populations of breeding wading birds and thus promote healthy, functioning wetland ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acreman, M. C., J. Fisher, C. J. Stratford, D. J. Mould & J. O. Mountford, 2007. Hydrological science and wetland restoration: some case studies from Europe. Hydrology and Earth System Sciences 11: 158–169.

    Article  CAS  Google Scholar 

  • Anderson, D. R., 2007. Model based inference in the life sciences: a primer on evidence. Springer, New York.

    Google Scholar 

  • Aumen, N. G., 1995. The history of human impacts, lake management, and limnological research on Lake Okeechobee, Florida (USA). Archiv fr Hydrobiologie (Special Issues, Advances in Limnology) 45: 1–16.

    Google Scholar 

  • Bancroft, G. T., 1989. Status and conservation of wading birds in the Everglades. American Birds 43: 1258–1265.

    Google Scholar 

  • Bancroft, G. T., A. M. Strong, R. J. Sawicki, W. Hoffman & S. D. Jewell, 1994. Relationships among wading bird foraging patterns, colony locations, and hydrology in the Everglades. In Davis, S. M. & J. C. Ogden (eds), Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach: 615–657.

    Google Scholar 

  • Bancroft, G. T., D. E. Gawlik & K. Rutchey, 2002. Distribution of wading birds relative to vegetation and water depths in the northern Everglades of Florida, USA. Waterbirds 25: 265–277.

    Article  Google Scholar 

  • Baumgärtner, D., M. Mörtl & K. O. Rothhaupt, 2008. Effects of water-depth and water-level fluctuations on the macroinvertebrate community structure in the littoral zone of Lake Constance. Hydrobiologia 613: 97–107.

    Article  Google Scholar 

  • Bildstein, K. L., W. Post, J. Johnston & P. Frederick, 1990. Freshwater wetlands, rainfall, and the breeding ecology of White Ibises in coastal South Carolina. Wilson Bulletin 102: 84–98.

    Google Scholar 

  • Beerens, J. M., P. C. Frederick, E. G. Noonburg & D. E. Gawlik, 2015. Determining habitat quality for species that demonstrate dynamic habitat selection. Ecology and Evolution. doi:10.1002/ece3.1813.

    PubMed  PubMed Central  Google Scholar 

  • Botta, R. A., 2014. A habitat suitability model for wading birds in a large subtropical lake: linking hydrologic fluctuations and nesting. M.S. Thesis, Florida Atlantic University, Boca Raton.

  • Burke, C. M. & W. A. Montevecchi, 2009. The foraging decisions of a central place foraging seabird in response to fluctuations in local prey conditions. Journal of Zoology 278: 354–361.

    Article  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed. Springer, New York.

    Google Scholar 

  • Canepuccia, A. D., J. P. Isacch, D. A. Gagliardini, A. H. Escalante & O. O. Iribarne, 2007. Waterbird response to changes in habitat area and diversity generated by rainfall in a SW Atlantic coastal lagoon. Waterbirds 30: 541–553.

    Article  Google Scholar 

  • Carpenter, S. R., E. H. Stanley & M. J. Vander Zanden, 2011. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annual Review of Environment and Resources 36: 75–99.

    Article  Google Scholar 

  • Casanova, M. T. & M. A. Brock, 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology 147: 237–250.

    Article  Google Scholar 

  • Cézilly, F., V. Boy, R. E. Green, G. J. M. Hirons & A. R. Johnson, 1995. Interannual variation in Greater Flamingo breeding success in relation to water levels. Ecology 76: 20–26.

    Article  Google Scholar 

  • Coops, H. & S. H. Hosper, 2002. Water-level management as a tool for the restoration of shallow lakes in the Netherlands. Lake and Reservoir Management 18: 293–298.

    Article  Google Scholar 

  • Coops, H., M. Beklioglu & T. L. Crisman, 2003. The role of water-level fluctuations in shallow lake ecosystems—workshop conclusions. Hydrobiologia 506–509: 23–27.

    Article  Google Scholar 

  • Crowley, P. H., 1992. Resampling methods for computation-intensive data analysis in ecology and evolution. Annual Review of Ecology and Systematics 23: 405–447.

    Article  Google Scholar 

  • Crozier, G. E. & D. E. Gawlik, 2003. Wading bird nesting effort as an index to wetland ecosystem integrity. Waterbirds 26: 303–324.

    Article  Google Scholar 

  • Cui, B., Y. Hua, C. Wang, X. Liao, X. Tan & W. Tao, 2010. Estimation of ecological water requirements based on habitat response to water level in Huanghe River delta, China. Chinese Geographical Science 20: 318–329.

    Article  Google Scholar 

  • David, P. G., 1994a. Wading bird nesting at Lake Okeechobee, Florida: an historic perspective. Colonial Waterbirds 17: 69–77.

    Article  Google Scholar 

  • David, P. G., 1994b. Wading bird use of Lake Okeechobee relative to fluctuating water levels. Wilson Bulletin 106: 719–732.

    Google Scholar 

  • DesGranges, J., J. Ingram, B. Drolet, J. Morin, C. Savage & D. Borcard, 2006. Modeling wetland bird response to water level changes in the Lake Ontario-St. Lawrence River hydrosystem. Environmental Monitoring and Assessment 113: 329–365.

    Article  PubMed  Google Scholar 

  • Dimalexis, A. & M. Pyrovetsi, 1997. Effects of water level fluctuations on wading bird foraging habitat use at an irrigation reservoir, Lake Kerkini, Greece. Colonial Waterbirds 20: 244–252.

    Article  Google Scholar 

  • Döll, P., K. Fiedler & J. Zhang, 2009. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrology and Earth System Sciences 13: 2413–2432.

    Article  Google Scholar 

  • Drent, R. H. & S. Daan, 1980. The prudent parent: energetic adjustments in avian breeding. Ardea 68: 225–252.

    Google Scholar 

  • Fischer, P. & U. Öhl, 2005. Effects of water-level fluctuations on the littoral benthic fish community in lakes: a mesocosm experiment. Behavioral Ecology 16: 741–746.

    Article  Google Scholar 

  • Frederick, P. C. & M. W. Collopy, 1989a. Nesting success of five Ciconiiform species in relation to water conditions in the Florida Everglades. Auk 106: 625–634.

    Google Scholar 

  • Frederick, P. C. & M. W. Collopy, 1989b. The role of predation in determining nesting success of five species of wading birds in the Florida Everglades. Condor 91: 860–867.

    Article  Google Scholar 

  • Frederick, P. C. & J. C. Ogden, 2001. Pulsed breeding of long-legged wading birds and the importance of infrequent severe drought conditions in the Florida Everglades. Wetlands 21: 484–491.

    Article  Google Scholar 

  • Frederick, P. C., T. Towles, R. J. Sawicki & G. T. Bancroft, 1996. Comparison of aerial and ground techniques for discovery and census of wading bird (Ciconiiformes) nesting colonies. Condor 98: 837–841.

    Article  Google Scholar 

  • Frederick, P. C., D. E. Gawlik, J. C. Ogden, M. I. Cook & M. Lusk, 2009. The White Ibis and Wood Stork as indicators for restoration of the Everglades ecosystem. Ecological Indicators 95: 583–595.

    Google Scholar 

  • Gafny, S., A. Gasith & M. Goren, 1992. Effect of water level fluctuation on shore spawning of Mirogrex terraesanctae (Steinitz), (Cyprinidae) in Lake Kineret, Israel. Journal of Fish Biology 41: 863–871.

    Article  Google Scholar 

  • Gbogbo, F., W. Oduro & S. K. Oppong, 2010. Response of waterbirds species to fluctuating water levels in tropical coastal wetlands. African Journal of Ecology 48: 637–643.

    Google Scholar 

  • Gawlik, D. E., 2002. The effects of prey availability on the numerical response of wading birds. Ecological Monographs 72: 329–346.

    Article  Google Scholar 

  • González, J. A., 1997. Seasonal variation in the foraging ecology of the Wood Stork in the southern Llanos of Venezuela. Condor 99: 671–680.

    Article  Google Scholar 

  • Hafner, H., R. E. Bennetts & Y. Kayser, 2001. Changes in clutch size, brood size and numbers of nesting Squacco Herons Ardeola ralloides over a 32-year period in the Camargue, southern France. Ibis 143: 11–16.

    Article  Google Scholar 

  • Hagen, M., W. D. Kissling, C. Rasmussen, D. W. Carstensen, Y. L. Dupont, C. N. Kaiser-Bunbury, E. J. O’Gorman, J. M. Olesen, M. A. M. de Aguiar, L. E. Brown, I. Alves-Dos-Santos, P. R. Guimarães, K. P. Maia, F. M. D. Marquitti, M. M. Vidal, F. K. Edwards, J. Genini, G. B. Jenkins, K. Trøjelsgaard, G. Woodward, P. Jordano, M. E. Ledger, T. Mclaughlin, L. P. C. Morellato & J. M. Tylianakis, 2012. Biodiversity, species interactions and ecological networks in a fragmented world. Advances in Ecological Research 46: 89–120.

    Article  Google Scholar 

  • Havens, K. E. & D. E. Gawlik, 2005. Lake Okeechobee conceptual ecological model. Wetlands 25: 908–925.

    Article  Google Scholar 

  • Herring, G., D. E. Gawlik, M. I. Cook & J. M. Beerens, 2010. Sensitivity of nesting Great Egrets (Ardea alba) and White Ibises (Eudocimus albus) to reduced prey availability. Auk 127: 660–670.

    Article  Google Scholar 

  • Jin, K. R., J. H. Hamrick & T. Tisdale, 2000. Application of three-dimensional hydrodynamic model for Lake Okeechobee. Journal of Hydraulic Engineering 126: 758–771.

    Article  Google Scholar 

  • Johnson, K. G., M. S. Allen & K. E. Havens, 2007. A review of littoral vegetation, fisheries, and wildlife responses to hydrologic variation at Lake Okeechobee. Wetlands 27: 110–126.

    Article  Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. In Dodge, D. P. (ed.), Proceedings of the International Large River Symposium. Canadian Special Publication of Fisheries and Aquatic Sciences: 110–127.

  • Kahl, M. P. Jr., 1964. Food ecology of the Wood Stork (Mycteria americana) in Florida. Ecological Monographs 34: 97–117.

    Article  Google Scholar 

  • Kingsford, R. T., 2000. Protecting rivers in arid regions or pumping them dry? Hydrobiologia 427: 1–11.

    Article  CAS  Google Scholar 

  • Kingsford, R. T., 2011. Conservation management of rivers and wetlands under climate change—a synthesis. Marine and Freshwater Research 62: 217–222.

    Article  CAS  Google Scholar 

  • Kingsford, R. T. & K. M. Auld, 2005. Waterbird breeding and environmental flow management in the Macquarie marshes, arid Australia. River Research and Applications 21: 187–200.

    Article  Google Scholar 

  • Kingsford, R. T., D. A. Roshier & J. L. Porter, 2010. Australian waterbirds - time and space travellers in dynamic desert landscapes. Marine and Freshwater Research 61: 875–884.

    Article  CAS  Google Scholar 

  • Kingsford, R. T. & R. F. Thomas, 2004. Destruction of wetlands and waterbird populations by dams and irrigation on the Murrumbidgee river in arid Australia. Environmental Management 34: 383–396.

    Article  CAS  PubMed  Google Scholar 

  • Klassen, J. A. & D. E. Gawlik, 2012. Preliminary evidence of prey preference and colony decline after a water recession reversal. In Cook, M. I. & M. Kobza (eds), South Florida Wading Birds Report, Vol 18. South Florida Water Management District, West Palm Beach: 48–49.

  • Kushlan, J. A., 1976. Wading bird predation in a seasonally fluctuating pond. Auk 93: 464–476.

    Google Scholar 

  • Kushlan, J. A., 1986. Responses of wading birds to seasonally fluctuating water levels: strategies and their limits. Colonial Waterbirds 9: 155–162.

    Article  Google Scholar 

  • Kushlan, J. A. & M. S. Kushlan, 1980. Everglades alligator nests: nesting sites for marsh reptiles. Copeia 1980: 930–932.

    Article  Google Scholar 

  • Lack, D., 1947. The significance of clutch-size. Ibis 89: 302–352.

    Article  Google Scholar 

  • Lantz, S. M., D. E. Gawlik & M. I. Cook, 2010. The effects of water depth and submerged aquatic vegetation on the selection of foraging habitat and foraging success of wading birds. Condor 112: 460–469.

    Article  Google Scholar 

  • Liang, J., X. Yu, G. Zeng, H. Wu, X. Lai, X. Li, L. Huang, Y. Yuan, S. Guo & J. Dai, 2015. A hydrologic index based method for determining ecologically acceptable water-level range of Dongting Lake. Journal of Limnology 74: 75–84.

    Google Scholar 

  • Loftus, W. F. & A. M. Eklund, 1994. Long term dynamics of an Everglades small fish assemblage. In Davis, S. M. & J. C. Ogden (eds), Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Boca Raton: 461–483.

    Google Scholar 

  • Lorenz, J. J., 2014. The relationship between water level, prey availability and reproductive success in Roseate Spoonbills foraging in a seasonally-flooded wetland while nesting in Florida Bay. Wetlands 34: S201–S211.

    Article  Google Scholar 

  • Ma, Z., Y. Cai, B. Li & J. Chen, 2010. Managing wetland habitats for waterbirds: an international perspective. Wetlands 30: 15–27.

    Article  CAS  Google Scholar 

  • Mourão, G., W. Tomas & Z. Campos, 2010. How much can the number of Jabiru Stork (Ciconiidae) nests vary due to change in flood extension in a large Neotropical floodplain? Zoologia 27: 751–756.

    Article  Google Scholar 

  • Nakagawa, S. & I. C. Cuthill, 2007. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biological Reviews 82: 591–605.

    Article  PubMed  Google Scholar 

  • Nuttle, W. K., (1997) Measurement of wetland hydroperiod using harmonic analysis. Wetlands 17: 82–89

    Article  Google Scholar 

  • Ogden, J. C., 1994. A comparison of wading bird nesting colony dynamics (1931-1946 and 1974-1989) as an indication of ecosystem conditions in the southern Everglades. In Davis, S. M. & J. C. Ogden (eds), Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach: 533–570.

    Google Scholar 

  • Padisák, J. & C. S. Reynolds, 2003. Shallow lakes: the absolute, the relative, the functional and the pragmatic. Hyrobiologia 506–509: 1–11.

    Article  Google Scholar 

  • Poff, N. L. & J. K. H. Zimmerman, 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology 55: 194–205.

    Article  Google Scholar 

  • RECOVER, 2014. External Draft, 2014 System Status Report (Chapter 6). Restoration Coordination and Verification Program, c/o United States Army Corps of Engineers, Jacksonville District, Jacksonville, Florida, and South Florida Water Management District, West Palm Beach [Published at http://141.232.10.32/pm/ssr_2014/Docs/ssr_full_2014.pdf].

  • Richardson, J. R. & T. T. Harris, 1995. Vegetation mapping and change detection in the Lake Okeechobee marsh ecosystem. Archiv fr Hydrobiologie (Special Issues, Advances in Limnology) 45: 17–39.

    Google Scholar 

  • Riis, T. & I. Hawes, 2002. Relationships between water level fluctuations and vegetation diversity in shallow water of New Zealand lakes. Aquatic Botany 74: 133–148.

    Article  Google Scholar 

  • SAS Institute, Inc. 2013. SAS statistical software v. 9.4. SAS Institute, Inc., Cary, North Carolina.

  • Sherley, R. B., L. G. Underhill, B. J. Barham, P. J. Barham, J. C. Coetzee, R. J. M. Crawford, B. M. Dyer, T. M. Leshoror & L. Upfold, 2013. Influence of local and regional prey availability on breeding performance of African penguins Spheniscus demersus. Marine Ecology Progress Series 473: 291–301.

    Article  Google Scholar 

  • Smith, J. P. & M. W. Collopy, 1995. Colony turnover, nest success and productivity, and causes of nest failure among wading birds (Ciconiiformes) at Lake Okeechobee, Florida, (1989-1992). Archiv fr Hydrobiologir (Special Issues, Advances in Limnology) 45: 287–316.

    Google Scholar 

  • Smith, J. P., Richardson J. R. & M. W. Collopy, 1995. Foraging habitat selection among wading birds (Ciconiiformes) at Lake Okeechobee, Florida, in relation to hydrology and vegetative cover. Archiv fr Hydrobiologie (Special Issues, Advanced Limnology) 45: 247–285.

    Google Scholar 

  • Snyder, N. F. R., S. R. Beissinger & R. E. Chandler, 1989. Reproduction and demography of the Florida Everglade (Snail) Kite. Condor 91: 300–316.

    Article  Google Scholar 

  • South Florida Water Management District, 2010. Final adaptive protocols for Lake Okeechobee operations. South Florida Water Management District, West Palm Beach, Florida [Published at http://www.sfwmd.gov/portal/page/portal/xrepository/sfwmd_repository_pdf/ap_lo_final_20100916.pdf].

  • South Florida Water Management District, 2014. DBHYDRO browser, environmental monitoring [Published at http://www.sfwmd.gov/dbhydro/].

  • Stephen, D., D. M. Balayla, E. Bécares, S. E. Collings, C. Fernández-Aláez, M. Fernández-Aláez, C. Ferriol, P. García, J. Gomá, M. Gyllström, L. A. Hansson, J. Hietala, T. Kairesalo, M. R. Miracle, S. Romo, J. Rueda, A. Ståhl-Del Banco, M. Svensson, K. Vakkilainen, M. Valentín, W. J. Van de Bund, E. Van Donk, E. Vicente, M. J. Villena & B. Moss, 2004. Continental-scale patterns of nutrient and fish effects on shallow lakes: introduction to a pan-European mesocosm experiment. Freshwater Biology 49: 1517–1524.

    Article  CAS  Google Scholar 

  • Timmermans, S. T. A., S. S. Badzinski & J. W. Ingram, 2008. Associations between breeding marsh bird abundances and Great Lakes hydrology. Journal of Great Lakes Research 34: 351–364.

    Article  Google Scholar 

  • Trexler, J. C., W. F. Loftus, F. Jordan, J. H. Chick, K. L. Kandl, T. C. McElroy & O. L. Bass Jr., 2002. Ecological scale and its implications for freshwater fishes in the Florida Everglades. In Porter, J. W. & K. G. Porter (eds), The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook. CRC Press, Boca Raton: 153–181.

    Google Scholar 

  • Winchester, C., S. B. Castleberry & M. T. Mengak, 2009. Evaluation of factors restricting distribution of the endangered Key Largo Woodrat. Journal of Wildlife Management 73: 374–379.

    Article  Google Scholar 

  • Yin, X. A. & Z. F. Yang, 2012. A method to assess the alteration of water-level-fluctuation patterns in lakes. Procedia Environmental Sciences 13: 2427–2436.

    Article  Google Scholar 

  • Zedler, J. B. & S. Kercher, 2005. Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources 30: 39–74.

    Article  Google Scholar 

Download references

Acknowledgments

We thank our field research crews and fellow researchers who assisted in collection of field data: G. Akerman, R. Botta, J. Bredlau, E. Dancer, M. Dillon, B. Farmer, A. Galle, R. Hartman, P. Heidemann, F. Marenghi, D. Marx, J. Michaud, K. Norris, and E. Plazarte. We benefited from discussions with B. Botson, C. Callaghan, P. Gray, C. Hanlon, G. Herring, J. Klassen, and B. Sharfstein. SFWMD staff generously provided data on the locations and characteristics of wading bird foraging flocks. Funding for this research was provided by the U.S. Army Engineer Research and Development Center (Grant No. W912HZ-09-2-0022), the National Park Service (Grant No. J5297 05 0083), and Florida Atlantic University. Research techniques were approved by the Florida Atlantic University Institutional Animal Care and Use Committee (Protocol A10-30) and conducted under U.S. Fish and Wildlife Service Research Permit 23354.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer E. Chastant.

Additional information

Handling editor: Stuart Anthony Halse

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chastant, J.E., Petersen, M.L. & Gawlik, D.E. Nesting substrate and water-level fluctuations influence wading bird nesting patterns in a large shallow eutrophic lake. Hydrobiologia 788, 371–383 (2017). https://doi.org/10.1007/s10750-016-3015-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3015-0

Keywords

Navigation