Skip to main content

Advertisement

Log in

Carbon and nutrient cycling in kettle hole sediments depending on hydrological dynamics: a review

  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Kettle holes as a specific group of isolated, small lentic freshwater systems (LFS) often are (i) hot spots of biogeochemical cycling and (ii) exposed to frequent sediment desiccation and rewetting. Their ecological functioning is greatly determined by immanent carbon and nutrient transformations. The objective of this review is to elucidate effects of a changing hydrological regime (i.e., dry–wet cycles) on carbon and nutrient cycling in kettle hole sediments. Generally, dry–wet cycles have the potential to increase C and N losses as well as P availability. However, their duration and frequency are important controlling factors regarding direction and intensity of biogeochemical and microbiological responses. To evaluate drought impacts on sediment carbon and nutrient cycling in detail requires the context of the LFS hydrological history. For example, frequent drought events induce physiological adaptation of exposed microbial communities and thus flatten metabolic responses, whereas rare events provoke unbalanced, strong microbial responses. Different potential of microbial resilience to drought stress can irretrievably change microbial communities and functional guilds, gearing cascades of functional responses. Hence, dry–wet events can shift the biogeochemical cycling of organic matter and nutrients to a new equilibrium, thus affecting the dynamic balance between carbon burial and mineralization in kettle holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aeschbacher, M., M. Sander & R. P. Schwarzenbach, 2010. Novel electrochemical approach to assess the redox properties of humic substances. Environmental Science and Technology 44: 87–93.

    Article  CAS  PubMed  Google Scholar 

  • Akatsuka, T. & O. Mitamura, 2011. Response of denitrification rate associated with wetting and drying cycles in a littoral wetland area of Lake Biwa, Japan. Limnology 12: 127–135.

    Article  CAS  Google Scholar 

  • Althoff, F., K. Benzing, P. Comba, C. McRoberts, D. R. Boyd, S. Greiner & F. Keppler, 2014. Abiotic methanogenesis from organosulphur compounds under ambient conditions. Nature Communications 5: 4205.

    Article  CAS  PubMed  Google Scholar 

  • Amalfitano, S., S. Fazi, A. Zoppini, A. Barra Caracciolo, P. Grenni & A. Puddu, 2008. Responses of benthic bacteria to experimental drying in sediments from mediterranean remporary rivers. Microbial Ecology 55: 270–279.

    Article  CAS  PubMed  Google Scholar 

  • Andrews, J. A., K. G. Harrison, R. Matamala & W. H. Schlesinger, 1999. Separation of root respiration from total soil respiration using carbon-13 labeling during free-air carbon dioxide enrichment (FACE). Journal of the Soil Science Society of America 63: 1429–1435.

    Article  CAS  Google Scholar 

  • Arce, M. I., M. D. M. Sánchez-Montoya & R. Gómez, 2015. Nitrogen processing following experimental sediment rewetting in isolated pools in an agricultural stream of a semiarid region. Ecological Engineering 77: 233–241.

    Article  Google Scholar 

  • Armstrong, W., D. Cousins, J. Armstrong, D. W. Turner & P. M. Becklett, 2000. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Annals of Botany 86: 687–703.

    Article  Google Scholar 

  • Attermeyer, K., T. Hornick, Z. E. Kayler, A. Bahr, E. Zwirnmann, H. P. Grossart & K. Premke, 2014. Enhanced bacterial decomposition with increasing addition of autochthonous to allochthonous carbon without any effect on bacterial community composition. Biogeosciences 11: 1479–1489.

    Article  CAS  Google Scholar 

  • Attermeyer, K., H. P. Grossart, S. Flury & K. Premke, Submitted. Pelagic bacterial processes and biogeochemical changes in kettle holes are mainly driven by autochthonous production. Aquatic Sciences.

  • Baldwin, D. S. & A. M. Mitchell, 2000. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis. Regulated Rivers-Research & Management 16: 457–467.

    Article  Google Scholar 

  • Baldwin, D. S., A. M. Mitchell & G. N. Rees, 2000. The effects of in situ drying on sediment-phosphate interactions in sediments from an old wetland. Hydrobiologia 431: 3–12.

    Article  CAS  Google Scholar 

  • Barthès, A., L. Ten-Hage, A. Lamy, J.-L. Rols & J. Leflaive, 2015. Resilience of aggregated microbial communities subjected to drought – small-scale studies. Microbial Ecology 70: 9–20.

    Article  PubMed  CAS  Google Scholar 

  • Bastviken, D., J. J. Cole, M. L. Pace & M. C. Van de-Bogert, 2008. Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. Journal of Geophysical Research: Biogeosciences. doi:10.1029/2007JG000608.

    Google Scholar 

  • Biggs, J., P. Williams, M. Whitfield, P. Nicolet & A. Weatherby, 2005. 15 Years of pond assessment in Britain: results and lessons learned from the work of Pond Conservation. Aquatic Conservation-Marine and Freshwater Ecosystems 15: 693–714.

    Article  Google Scholar 

  • Billi, D. & M. Potts, 2002. Life and death of dried prokaryotes. Research in Microbiology 153: 7–12.

    Article  CAS  PubMed  Google Scholar 

  • Bollmann, A. & R. Conrad, 1998. Influence on NO and N2O releas by nitrification and denitrification in soils. Global Change Biology 4: 387–396.

    Article  Google Scholar 

  • Borrel, G., D. Jézéquel, C. Biderre-Petit, N. Morel-Desrosiers, J. P. Morel, P. Peyret, G. Fonty & A. C. Lehours, 2011. Production and consumption of methane in freshwater lake ecosystems. Research in Microbiology 162: 832–847.

    Article  CAS  PubMed  Google Scholar 

  • Bouvy, M., S. M. Nascimento, R. J. R. Molica, A. Ferreira, V. Huszar & S. M. F. O. Azevedo, 2003. Limnological features in Tapacurá reservoir (northeast Brazil) during a severe drought. Hydrobiologia 493: 115–130.

    Article  CAS  Google Scholar 

  • Brothers, S. M., S. Hilt, K. Attermeyer, H. P. Grossart, S. Kosten, B. Lischke, T. Mehner, N. Meyer, K. Scharnweber & J. Kohler, 2013. A regime shift from macrophyte to phytoplankton dominance enhances carbon burial in a shallow, eutrophic lake. Ecosphere 4(11): 1–17.

    Article  Google Scholar 

  • Burgin, A. J. & S. K. Hamilton, 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment 5: 89–96.

    Article  Google Scholar 

  • Callieri, C., R. Bertoni, M. Contesini & F. Bertoni, 2014. Lake level fluctuations boost cyanobacterial “oligotrophic blooms”. PLoS One 9: e109526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casper, P., S. C. Maberly, G. H. Hall & B. J. Finlay, 2000. Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry 49: 1–19.

    Article  CAS  Google Scholar 

  • Catalan, N., D. von Schiller, R. Marce, M. Koschorreck, L. Gomez-Gener & B. Obrador, 2014. Carbon dioxide efflux during the flooding phase of temporary ponds. Limnetica 33: 349–359.

    Google Scholar 

  • Cereghino, R., J. Biggs, B. Oertli & S. Declerck, 2008. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597: 1–6.

    Article  Google Scholar 

  • Conrad, R., 1996. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological reviews 60: 609–640.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad, R., Y. Ji, M. Noll, M. Klose, P. Claus & A. Enrich-Prast, 2014. Response of the methanogenic microbial communities in Amazonian oxbow lake sediments to desiccation stress. Environmental Microbiology 16: 1682–1694.

    Article  CAS  PubMed  Google Scholar 

  • De Groot, C.-J. & A. Fabre, 1993. The impact of desiccation of a freshwater marsh (Garcines Nord, Camargue, France) on sediment-water-vegetation interactions. Hydrobiologia 252: 105–116.

    Article  Google Scholar 

  • De Groot, C. J. & C. Van Wijck, 1993. The impact of desiccation of a freshwater marsh (Garcines Nord, Camargue, France) on sediment-water-vegetation interactions – Part 1: the sediment chemistry. Hydrobiologia 252: 83–94.

    Article  Google Scholar 

  • De Tezanos Pinto, P. & I. O´Farrell, 2014. Regime shifts between free-floating plants and phytoplankton: a review. Hydrobiologia 740: 13–24.

    Article  CAS  Google Scholar 

  • De Vicente, I., F. Andersen, H. Hansen, L. Cruz-Pizarro & H. Jensen, 2010. Water level fluctuations may decrease phosphate adsorption capacity of the sediment in oligotrophic high mountain lakes. Hydrobiologia 651: 253–264.

    Article  CAS  Google Scholar 

  • Denef, K., J. Six, H. Bossuyt, S. D. Frey, E. T. Elliott, R. Merckx & K. Paustian, 2001. Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biology and Biochemistry 33: 1599–1611.

    Article  CAS  Google Scholar 

  • Dieter, D., C. Herzog & M. Hupfer, 2015. Effects of drying on phosphorus uptake in re-flooded lake sediments. Environmental Science and Pollution Research 22(21): 17065–17081.

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos Afonso, M. & W. Stumm, 1992. Reductive dissolution of iron(III) (Hydr)oxides by hydrogen-sulfide. Langmuir 8: 1671–1675.

    Article  Google Scholar 

  • Downing, J. A., 2010. Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29: 9–24.

    Google Scholar 

  • Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack & J. J. Middelburg, 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51: 2388–2397.

    Article  Google Scholar 

  • Downing, J. A., J. J. Cole, J. J. Middelburg, R. G. Striegl, C. M. Duarte, P. Kortelainen, Y. T. Prairie & K. A. Laube, 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochemical Cycles 22: GB1018.

    Article  CAS  Google Scholar 

  • Dowrick, D. J., C. Freeman, M. A. Lock & B. Reynolds, 2006. Sulphate reduction and the suppression of peatland methane emissions following summer drought. Geoderma 132: 384–390.

    Article  CAS  Google Scholar 

  • Eimers, M. C., S. A. Watmough, J. M. Buttle & P. J. Dillon, 2007. Drought-induced sulphate release from a wetland in south-central Ontario. Environmental Monitoring and Assessment 127: 399–407.

    Article  CAS  PubMed  Google Scholar 

  • Eller, G., L. Känel & M. Krüger, 2005. Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plußsee. Applied and Environmental Microbiology 71: 8925–8928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ettwig, K. F., M. K. Butler, D. Le Paslier, E. Pelletier, S. Mangenot, M. M. M. Kuypers, F. Schreiber, B. E. Dutilh, J. Zedelius, D. De Beer, J. Gloerich, H. J. C. T. Wessels, T. Van Alen, F. Luesken, M. L. Wu, K. T. Van de Pas-Schoonen, H. J. M. Op den Camp, E. M. Janssen-Megens, K. J. Francoijs, H. Stunnenberg, J. Weissenbach, M. S. M. Jetten & M. Strous, 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464: 543–548.

    Article  CAS  PubMed  Google Scholar 

  • Evans, S. E. & M. D. Wallenstein, 2011. Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry 109: 101–116.

    Article  Google Scholar 

  • Felsmann, K., M. Baudis, K. Gimbel, Z. E. Kayler, R. Ellerbrock, H. Bruelheide, J. Bruckhoff, E. Welk, H. Puhlmann, M. Weiler, A. Gessler & A. Ulrich, 2015. Soil bacterial community structure responses to precipitation reduction and forest management in forest ecosystems across Germany. PLoS One 10: e0122539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fenner, N. & C. Freeman, 2011. Drought-induced carbon loss in peatlands. Nature Geoscience 4: 895–900.

    Article  CAS  Google Scholar 

  • Fernandez-Aláez, M. & C. Fernandez-Aláez, 2010. Effects of the intense summer desiccation and the autumn filling on the water chemistry in some Mediterranean ponds. Limnetica 29: 59–73.

    Google Scholar 

  • Foulquier, A., B. Volat, M. Neyra, G. Bornette & B. Montuelle, 2013. Long-term impact of hydrological regime on structure and functions of microbial communities in riverine wetland sediments. FEMS Microbiology Ecology 85: 211–226.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, C., N. Ostle & H. Kang, 2001. An enzymic ‘latch’ on a global carbon store: a shortage of oxygen locks up carbon in peatlands by restraining a single enzymes. Nature 409: 149.

    Article  CAS  PubMed  Google Scholar 

  • Fromin, N., G. Pinay, B. Montuelle, D. Landais, J. M. Ourcival, R. Joffre & R. Lensi, 2010. Impact of seasonal sediment desiccation and rewetting on microbial processes involved in greenhouse gas emissions. Ecohydrology 3: 339–348.

    Article  CAS  Google Scholar 

  • Gerke, H. H., S. Koszinski, T. Kalettka & M. Sommer, 2010. Structures and hydrologic function of soil landscapes with kettle holes using an integrated hydropedological approach. Journal of Hydrology 393: 123–132.

    Article  Google Scholar 

  • Gette-Bouvarot, M., F. Mermillod-Blondin, D. Lemoine, C. Delolme, M. Danjean, L. Etienne & L. Volatier, 2015. The potential control of benthic biofilm growth by macrophytes – a mesocosm approach. Ecological Engineering 75: 178–186.

    Article  Google Scholar 

  • Gómez, R., I. M. Arce, J. J. Sánchez & M. del Mar Sánchez-Montoya, 2012. The effects of drying on sediment nitrogen content in a Mediterranean intermittent stream: a microcosms study. Hydrobiologia 679: 43–59.

    Article  CAS  Google Scholar 

  • Grossart, H. P., K. Frindte, C. Dziallas, W. Eckert & K. W. Tang, 2011. Microbial methane production in oxygenated water column of an oligotrophic lake. Proceedings of the National Academy of Sciences of the United States of America 108: 19657–19661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosswald, M. G. & A. N. Rudoy, 1996. Quaternary Ice-Dammed Lake in Siberian Mountains. Izvestiya Akademii Nauk, Seriya Geograficheskaya: 112–126.

    Google Scholar 

  • Gudasz, C., D. Bastviken, K. Premke, K. Steger & L. J. Tranvik, 2012. Constrained microbial processing of allochthonous organic carbon in boreal lake sediments. Limnology & Oceanography 57: 163–175.

    Article  CAS  Google Scholar 

  • Haroon, M. F., S. H. Hu, Y. Shi, M. Imelfort, J. Keller, P. Hugenholtz, Z. G. Yuan & G. W. Tyson, 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 501: 567–570.

    Article  CAS  Google Scholar 

  • Hartley, A. M., W. A. House, M. E. Callow & B. S. C. Leadbeater, 1997. Coprecipitation of phosphate with calcite in the presence of photosynthesizing green algae. Water Research 31: 2261–2268.

    Article  CAS  Google Scholar 

  • Holgerson, M. A. & P. A. Raymond, 2016. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience. doi:10.1038/ngeo2654.

    Google Scholar 

  • Holmer, M. & P. Storkholm, 2001. Sulphate reduction and sulphur cycling in lake sediments: a review. Freshwater Biology 46: 431–451.

    Article  CAS  Google Scholar 

  • Hulthe, G., S. Hulth & P. O. J. Hall, 1998. Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochimica et Cosmochimica Acta 62: 1319–1328.

    Article  CAS  Google Scholar 

  • Hunting, E. R., 2013. UV radiation and organic matter composition shape bacterial functional diversity in sediments. Frontiers in Microbiology 4: 317.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hupfer, M. & J. Lewandowski, 2008. Oxygen controls the phosphorus release from lake sediments – a long-lasting paradigm in limnology. International Review of Hydrobiology 93: 415–432.

    Article  CAS  Google Scholar 

  • Jäger, P. & J. Röhrs, 1990. Coprecipitation of phosphorus with calcite in the eutrophic Wallersee: alpine Foreland of Salzburg, Austria. Internationale Revue der Gesamten Hydrobiologie 75: 153–173.

    Article  Google Scholar 

  • Jetten, M. S. M., L. Van Niftrik, M. Strous, B. Kartal, J. T. Keltjens & H. J. M. Op den Camp, 2009. Biochemistry and molecular biology of anammox bacteria. Critical Reviews in Biochemistry and Molecular Biology 44: 65–84.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, X., X. Hou, X. Zhou, X. Xin, A. Wright & Z. Jia, 2015. pH regulates key players of nitrification in paddy soils. Soil Biology and Biochemistry 81: 9–16.

    Article  CAS  Google Scholar 

  • Johnson, W. C., B. V. Millet, T. Gilmanov, R. A. Voldseth, G. R. Guntenspergen & D. E. Naugle, 2005. Vulnerability of northern prairie wetlands to climate change. BioScience 55: 863–872.

    Article  Google Scholar 

  • Kakumanu, M. L., C. L. Cantrell & M. A. Williams, 2013. Microbial community response to varying magnitudes of desiccation in soil: a test of the osmolyte accumulation hypothesis. Soil Biology and Biochemistry 57: 644–653.

    Article  CAS  Google Scholar 

  • Kalettka, T. & C. Rudat, 2006. Hydrogeomorphic types of glacially created kettle holes in North-East Germany. Limnologica 36: 54–64.

    Article  Google Scholar 

  • Kazanjian, G., S. Flury, K. Attermeyer, T. Kalettka, A. Kleeberg, K. Premke, J. Koehler & S. Hilt, Submitted. Primary production in nutrient-rich kettle holes: consequences for carbon sedimentation and mineralization. Ecosystems.

  • Keiluweit, M., J. J. Bougoure, P. S. Nico, J. Pett-Ridge, P. K. Weber & M. Kleber, 2015. Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change 5: 588–595.

    Article  CAS  Google Scholar 

  • Keppler, F., M. Boros, C. Frankenberg, J. Lelieveld, A. McLeod, A. M. Pirttilä, T. Röckmann & J. P. Schnitzler, 2009. Methane formation in aerobic environments. Environmental Chemistry 6: 459–465.

    Article  CAS  Google Scholar 

  • Kleeberg, A., M. Neyen, U. K. Schkade, T. Kalettka & G. Lischeid, 2015. Sediment cores from kettle holes in NE Germany reveal recent impacts of agriculture. Environmental Science and Pollution Research. doi:10.1007/s11356-015-5989-y.

    PubMed  Google Scholar 

  • Klüber, H. D. & R. Conrad, 1998. Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil. FEMS Microbiology Ecology 25: 301–318.

    Article  Google Scholar 

  • Knorr, K.-H. & C. Blodau, 2009. Impact of experimental drought and rewetting on redox transformations and methanogenesis in mesocosms of a northern fen soil. Soil Biology and Biochemistry 41: 1187–1198.

    Article  CAS  Google Scholar 

  • Knorr, K. H., G. Lischeid & C. Blodau, 2009. Dynamics of redox processes in a minerotrophic fen exposed to a water table manipulation. Geoderma 153: 379–392.

    Article  CAS  Google Scholar 

  • Kopáček, J., K. U. Ulrich, J. Hejzlar, J. Borovec & E. Stuchlík, 2001. Natural inactivation of phosphorus by aluminum in atmospherically acidified water bodies. Water Research 35: 3783–3790.

    Article  PubMed  Google Scholar 

  • Kortelainen, P., M. Rantakari, J. T. Huttunen, T. Mattsson, J. Alm, S. Juutinen, T. Larmola, J. Silvola & P. J. Martikainen, 2006. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biology 12: 1554–1567.

    Article  Google Scholar 

  • Lau, M. P., M. Sander, J. Gelbrecht & M. Hupfer, 2015. Solid phases as important electron acceptors in freshwater organic sediments. Biogeochemistry 123: 49–61.

    Article  CAS  Google Scholar 

  • Lijklema, L., 1980. Interaction of orthophosphate with Iron (III) and aluminum hydroxides. Environmental Science and Technology 14: 537–541.

    Article  CAS  Google Scholar 

  • Lischeid, G. & T. Kalettka, 2012. Grasping the heterogeneity of kettle hole water quality in Northeast Germany. Hydrobiologia 689: 63–77.

    Article  CAS  Google Scholar 

  • Lischeid, G., T. Kalettka, C. Merz & J. Steidl, 2015. Monitoring the phase space of ecosystems: concept and examples from the Quillow catchment, Uckermark. Ecological Indicators. doi:10.1016/j.ecolind.2015.10.067.

    Google Scholar 

  • Maberly, S. C., 1996. Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshwater Biology 35: 579–598.

    Article  CAS  Google Scholar 

  • Manzoni, S., S. M. Schaeffer, G. Katul, A. Porporato & J. P. Schimel, 2014. A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils. Soil Biology and Biochemistry 73: 69–83.

    Article  CAS  Google Scholar 

  • Mayer, L. M., K. H. Thornton & L. L. Schick, 2011. Bioavailability of organic matter photodissolved from coastal sediments. Aquatic Microbial Ecology 64: 275–284.

    Article  Google Scholar 

  • McClain, M. E., E. W. Boyer, C. L. Dent, S. E. Gergel, N. B. Grimm, P. M. Groffman, S. C. Hart, J. W. Harvey, C. A. Johnston, E. Mayorga, W. H. McDowell & G. Pinay, 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6: 301–312.

    Article  CAS  Google Scholar 

  • Megonigal, J. P., M. E. Hines & P. T. Visscher, 2004. Anaerobic metabolism: linkages to trace gases and aerobic processes. In Schlesinger, W. H. (ed.), Biogeochemistry. Elsevier-Pergamon, Oxford: 317–424.

    Google Scholar 

  • Merbach, W., T. Kalettka, C. Rudat & J. Augustin, 2002. Trace gas emissions from riparian areas of small eutrophic inland waters in Northeast-Germany. In Broll, G., W. Merbach & E. M. Pfeiffer (eds), Wetlands in Central Europe. Springer, Berlin: 235–244.

    Chapter  Google Scholar 

  • Michmerhuizen, C. M., R. G. Striegl & M. E. McDonald, 1996. Potential methane emission from north-temperate lakes following ice melt. Limnology and Oceanography 41: 985–991.

    Article  CAS  Google Scholar 

  • Mikha, M. M., C. W. Rice & G. A. Milliken, 2005. Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biology and Biochemistry 37: 339–347.

    Article  CAS  Google Scholar 

  • Miller, M. P. & D. M. McKnight, 2010. Comparison of seasonal changes in fluorescent dissolved organic matter among aquatic lake and stream sites in the Green Lakes Valley. Journal of Geophysical Research-Biogeosciences 115: G00F12.

    Article  CAS  Google Scholar 

  • Miller, A. E., J. P. Schimel, T. Meixner, J. O. Sickman & J. M. Melack, 2005. Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biology and Biochemistry 37: 2195–2204.

    Article  CAS  Google Scholar 

  • Mitchell, A. M. & D. S. Baldwin, 1999. The effects of sediment desiccation on the potential for nitrification, denitrification, and methanogenesis in an Australian reservoir. Hydrobiologia 392: 3–11.

    Article  CAS  Google Scholar 

  • Mosley, L. M., R. W. Fitzpatrick, D. Palmer, E. Leyden & P. Shand, 2014a. Changes in acidity and metal geochemistry in soils, groundwater, drain and river water in the Lower Murray River after a severe drought. Science of the Total Environment 485: 281–291.

    Article  PubMed  CAS  Google Scholar 

  • Mosley, L. M., B. Zammit, A. M. Jolley & L. Barnett, 2014b. Acidification of lake water due to drought. Journal of Hydrology 511: 484–493.

    Article  CAS  Google Scholar 

  • Navarro-García, F., M. Á. Casermeiro & J. P. Schimel, 2012. When structure means conservation: effect of aggregate structure in controlling microbial responses to rewetting events. Soil Biology and Biochemistry 44: 1–8.

    Article  CAS  Google Scholar 

  • Oertli, B., J. Biggs, R. Cereghino, P. Grillas, P. Joly & J. B. Lachavanne, 2005. Conservation and monitoring of pond biodiversity: introduction. Aquatic Conservation-Marine and Freshwater Ecosystems 15: 535–540.

    Article  Google Scholar 

  • Oldham, C. E., D. E. Farrow & S. Peiffer, 2013. A generalized Damkohler number for classifying material processing in hydrological systems. Hydrology and Earth System Sciences 17: 1133–1148.

    Article  Google Scholar 

  • Palik, B., D. P. Batzer, R. Buech, D. Nichols, K. Cease, L. Egeland & D. E. Streblow, 2001. Seasonal pond characteristics across a chronosequence of adjacent forest ages in northern Minnesota, USA. Wetlands 21: 532–542.

    Article  Google Scholar 

  • Palomo, L., C. Meile & S. B. Joye, 2013. Drought impacts on biogeochemistry and microbial processes in salt marsh sediments: a flow-through reactor approach. Biogeochemistry 112: 389–407.

    Article  CAS  Google Scholar 

  • Pätzig, M., T. Kalettka, M. Glemnitz & G. Berger, 2012. What governs macrophyte species richness in kettle hole types? A case study from Northeast Germany. Limnologica 42: 340–354.

    Article  CAS  Google Scholar 

  • Peralta, A. L., S. Ludmer & A. D. Kent, 2013. Hydrologic history influences microbial community composition and nitrogen cycling under experimental drying/wetting treatments. Soil Biology and Biochemistry 66: 29–37.

    Article  CAS  Google Scholar 

  • Peters, V. & R. Conrad, 1996. Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils. Soil Biology and Biochemistry 28: 371–382.

    Article  CAS  Google Scholar 

  • Pinay, G., J. C. Clément & R. J. Naiman, 2002. Basic principles and ecological consequences of changing water regime on nitrogen cycling in fluvial systems. Environmental Management 30: 481–491.

    Article  PubMed  Google Scholar 

  • Pohlon, E., A. O. Fandino & J. Marxsen, 2013. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting. PLoS One 8: e83365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Premke, K., K. Attermeyer, J. Augustin, A. Cabeszas, P. Casper, D. Deumlich, J. Gelbrecht, H. H. Gerke, A. Gessler, H. P. Grossart, S. Hilt, M. Hupfer, T. Kalettka, Z. Kayler, G. Lischeid, M. Sommer & D. Zak, Accepted. The importance of landscape complexity for carbon fluxes on the landscape level: Small-scale heterogeneity matters. WIREs Water.

  • Qiu, S. & A. McComb, 1995. Planktonic and microbial contributions to phosphorus release from fresh and air-dried sediments. Marine and Freshwater Research 46: 1039–1045.

    Article  Google Scholar 

  • Qiu, S. & A. J. McComb, 1996. Drying-induced stimulation of ammonium release and nitrification in reflooded lake sediment. Marine and Freshwater Research 47: 531–536.

    Article  CAS  Google Scholar 

  • Qiu, S. & A. J. McComb, 2002. Interrelations between iron extractability and phosphate sorption in reflooded air-dried sediments. Hydrobiologia 472: 39–44.

    Article  CAS  Google Scholar 

  • Read, J. S., D. P. Hamilton, A. R. Desai, K. C. Rose, S. MacIntyre, J. D. Lenters, R. L. Smyth, P. C. Hanson, J. J. Cole, P. A. Staehr, J. A. Rusak, D. C. Pierson, J. D. Brookes, A. Laas & C. H. Wu, 2012. Lake-size dependency of wind shear and convection as controls on gas exchange. Geophysical Research Letters 39: L09405.

    Article  Google Scholar 

  • Reddy, K. R. & W. H. Patrick, 1984. Nitrogen transformations and loss in flooded soils and sediments. Critical Reviews in Environmental Control 13: 273–309.

    Article  CAS  Google Scholar 

  • Reddy, K. R., W. H. Patrick & C. W. Lindau, 1989. Nitrification-denitrification at the plant root-sediment interface in wetlands. Limnology and Oceanography 34: 1004–1013.

    Article  CAS  Google Scholar 

  • Reddy, K. R., R. H. Kadlec, E. Flaig & P. M. Gale, 1999. Phosphorus retention in streams and wetlands: a review. Critical Reviews in Environmental Science and Technology 29: 83–146.

    Article  CAS  Google Scholar 

  • Rezanezhad, F., R. M. Couture, R. Kovac, D. O’Connell & P. Van Cappellen, 2014. Water table fluctuations and soil biogeochemistry: an experimental approach using an automated soil column system. Journal of Hydrology 509: 245–256.

    Article  CAS  Google Scholar 

  • Roehm, C. L., Y. T. Prairie & P. A. Del Giorgio, 2009. The pCO2 dynamics in lakes in the boreal region of northern Québec. Canada. Global Biogeochemical Cycles 23: GB3013.

    Google Scholar 

  • Sahuquillo, M., M. R. Miracle, S. M. Morata & E. Vicente, 2012. Nutrient dynamics in water and sediment of Mediterranean ponds across a wide hydroperiod gradient. Limnologica 42: 282–290.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. Szabó, A. Gragnani, E. H. Van Nes, S. Rinaldi, N. Kautsky, J. Norberg, R. M. M. Roijackers & R. J. M. Franken, 2003. Floating plant dominance as a stable state. Proceedings of the National Academy of the United States of America 100: 4040–4045.

    Article  CAS  Google Scholar 

  • Schimel, J., T. C. Balser & M. Wallenstein, 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88: 1386–1394.

    Article  PubMed  Google Scholar 

  • Schindler, D. W., R. E. Hecky, D. L. Findlay, M. P. Stainton, B. R. Parker, M. J. Paterson, K. G. Beaty, M. Lyng & S. E. M. Kasian, 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America 105: 11254–11258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, I., O. Sliekers, M. Schmid, I. Cirpus, M. Strous, E. Bock, J. G. Kuenen & M. S. M. Jetten, 2002. Aerobic and anaerobic ammonia oxidizing bacteria – competitors or natural partners? FEMS Microbiology Ecology 39: 175–181.

    CAS  PubMed  Google Scholar 

  • Schönbrunner, I. M., S. Preiner & T. Hein, 2012. Impact of drying and re-flooding of sediment on phosphorus dynamics of river-floodplain systems. Science of the Total Environment 432: 329–337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schubert, C. J., F. Vazquez, T. Lösekann-Behrens, K. Knittel, M. Tonolla & A. Boetius, 2011. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiology Ecology 76: 26–38.

    Article  CAS  PubMed  Google Scholar 

  • Scott, J. T. & M. J. McCarthy, 2010. Nitrogen fixation may not balance the nitrogen pool in lakes over timescales relevant to eutrophication management. Limnology and Oceanography 55: 1265–1270.

    Article  CAS  Google Scholar 

  • Segers, R., 1998. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41: 23–51.

    Article  CAS  Google Scholar 

  • Serrano, L., 1994. Sources, abundance and disappearance of polyphenolic compounds in temporary ponds of Donana National Park (south-western Spain). Australian Journal of Marine and Freshwater Research 45: 1555–1564.

    Article  CAS  Google Scholar 

  • Sgouridis, F., C. M. Heppell, G. Wharton, K. Lansdown & M. Trimmer, 2011. Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in a temperate re-connected floodplain. Water Research 45: 4909–4922.

    Article  CAS  PubMed  Google Scholar 

  • Sobek, S., E. Durisch-Kaiser, R. Zurbrug̈g, N. Wongfun, M. Wessels, N. Pasche & B. Wehrli, 2009. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnology and Oceanography 54: 2243–2254.

    Article  Google Scholar 

  • Søndergaard, M., J. P. Jensen & E. Jeppesen, 2001. Retention and internal loading of phosphorus in shallow, eutrophic lakes. TheScientificWorldJournal 1: 427–442.

    Article  PubMed  CAS  Google Scholar 

  • Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–509: 135–145.

    Article  Google Scholar 

  • Søndergaard, M., E. Jeppesen & J. P. Jensen, 2005. Pond or lake: does it make any difference? Archiv für Hydrobiologie 162: 143–165.

    Article  CAS  Google Scholar 

  • Spears, B. M., L. Cavalho, R. Perkins, A. Kirika & D. M. Paterson, 2007. Sediment phosphorus cycling in a large shallow lake: spatio-temporal variation in phosphorus pools and release. Hydrobiologia 584: 37–48.

    Article  CAS  Google Scholar 

  • Stark, J. M. & M. K. Firestone, 1995. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Applied and Environmental Microbiology 61: 218–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinman, A. D., M. E. Ogdahl, M. Weinert & D. G. Uzarski, 2014. Influence of water-level fluctuation duration and magnitude on sediment–water nutrient exchange in coastal wetlands. Aquatic Ecology 48: 143–159.

    Article  CAS  Google Scholar 

  • Strous, M., J. G. Kuenen & M. S. M. Jetten, 1999. Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology 65: 3248–3250.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tessier, A. J. & P. Woodruff, 2002. Cryptic trophic cascade along a gradient of lake size. Ecology 83: 1263–1270.

    Article  Google Scholar 

  • Thompson, A., O. A. Chadwick, D. G. Rancourt & J. Chorover, 2006. Iron-oxide crystallinity increases during soil redox oscillations. Geochimica et Cosmochimica Acta 70: 1710–1727.

    Article  CAS  Google Scholar 

  • Thullner, M., P. Regnier & P. Van Cappellen, 2007. Modeling microbially induced carbon degradation in redox-stratified subsurface environments: concepts and open questions. Geomicrobiology Journal 24: 139–155.

    Article  CAS  Google Scholar 

  • Tiner, R. W., 2003. Geographically isolated wetlands of the United States. Wetlands 23: 494–516.

    Article  Google Scholar 

  • Torres, I. C., K. S. Inglett & K. R. Reddy, 2011. Heterotrophic microbial activity in lake sediments: effects of organic electron donors. Biogeochemistry 104: 165–181.

    Article  CAS  Google Scholar 

  • Van der Kamp, G. & M. Hayashi, 2009. Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America. Hydrogeology Journal 17: 203–214.

    Article  CAS  Google Scholar 

  • Verpoorter, C., T. Kutser, D. A. Seekell & L. J. Tranvik, 2014. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters 41: 6396–6402.

    Article  Google Scholar 

  • Waldon, B., 2012. The conservation of small water reservoirs in the Krajenskie Lakeland (North-West Poland). Limnologica 42: 320–327.

    Article  Google Scholar 

  • Wang, F. & P. M. Chapman, 1999. Biological implications of sulfide in sediment – a review focusing on sediment toxicity. Environmental Toxicology and Chemistry 18: 2526–2532.

    CAS  Google Scholar 

  • Weinberger, R., 1999. Initiation and growth of cracks during desiccation of stratified muddy sediments. Journal of Structural Geology 21: 379–386.

    Article  Google Scholar 

  • Weise, L., A. Ulrich, M. Moreano, A. Gessler, Z. E. Kayler, K. Steger, B. Zeller, K. Rudolph, J. Knezevic-Jaric & K. Premke, 2016. Desiccation and rewetting of lake sediments causes enhanced carbon turnover and shifts in microbial community composition. FEMS Micobiology Ecology. doi: 10.1093/femsec/fiw035.

  • Winter, T. C. & J. W. LaBaugh, 2003. Hydrologic considerations in defining isolated wetlands. Wetlands 23: 532–540.

    Article  Google Scholar 

  • Wyatt, K. H., A. R. Rober, N. Schmidt & I. R. Davison, 2014. Effects of desiccation and rewetting on the release and decomposition of dissolved organic carbon from benthic macroalgae. Freshwater Biology 59: 407–416.

    Article  CAS  Google Scholar 

  • Xiang, S.-R., A. Doyle, P. A. Holden & J. P. Schimel, 2008. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology and Biochemistry 40: 2281–2289.

    Article  CAS  Google Scholar 

  • Xiang, W., X. Wan, S. Yan, Y. Wu & Z. Bao, 2013. Inhibitory effects of drought induced acidification on phenol oxidase activities in Sphagnum-dominated peatland. Biogeochemistry 116: 293–301.

    Article  CAS  Google Scholar 

  • Xiao, W. J., C. L. Song, X. Y. Cao & Y. Y. Zhou, 2012. Effects of air-drying on phosphorus sorption in shallow lake sediment, China. Fresenius Environmental Bulletin 21: 672–678.

    Google Scholar 

  • Yan, N. D., W. Keller, N. M. Scully, D. R. S. Lean & P. J. Dillon, 1996. Increased UV-B penetration in a lake owing to drought-induced acidification. Nature 381: 141–143.

    Article  CAS  Google Scholar 

  • Yuste, J. C., J. Peñuelas, M. Estiarte, J. Garcia-Mas, S. Mattana, R. Ogaya, M. Pujol & J. Sardans, 2011. Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Global Change Biology 17: 1475–1486.

    Article  Google Scholar 

  • Zak, D., J. Gelbrecht & C. E. W. Steinberg, 2004. Phosphorus retention at the redox interface of peatlands adjacent to surface waters in Northeast Germany. Biogeochemistry 70: 357–368.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank Gabriela Onandia, Thomas Kalettka, Tobias Hohenbrink, Robert Hommel, and Katja Felsmann for valuable discussions which greatly improved the manuscript. This work was funded by the Leibniz Association in the frame of the SAW Project “LandScales.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Reverey.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reverey, F., Grossart, HP., Premke, K. et al. Carbon and nutrient cycling in kettle hole sediments depending on hydrological dynamics: a review. Hydrobiologia 775, 1–20 (2016). https://doi.org/10.1007/s10750-016-2715-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2715-9

Keywords

Navigation