Skip to main content

Advertisement

Log in

Contrasting controls on phytoplankton dynamics in two large, pre-alpine lakes imply differential responses to climate change

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The effects of climate change on lake ecosystems are often complex. We examined how phytoplankton in two neighbouring, pre-alpine, large oligotrophic lakes with similar catchments and land uses are likely to respond to climate change. We hypothesised that (i) while their climates and landscape filters were relatively similar, differences in in-lake biological, physical and chemical filters would influence the phytoplankton responses to climate and (ii) direct effects of warming on phytoplankton dynamics and productivity would be relatively minor compared to indirect effects, especially those influencing the lakes’ mixing regimes. We combined (i) dynamic modelling of the physical forcing of the lakes under climate change, (ii) multi-year field sampling of relevant biological, physical and chemical variables and (iii) bioassay experiments, to test our hypotheses. Water temperatures have warmed over recent decades in one lake, but not in the other. The warming lake showed evidence of incomplete mixing and phytoplankton layering in winter 2009, while the other lake did not. Such changes influenced the phytoplankton phenology, and incomplete winter mixing is common in similar deep, temperate lakes. Inhibited winter mixing and related indirect effects of climate warming appear to be key early drivers of climate change effects on the phytoplankton of deep, temperate lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adrian, R., S. Wilhelm & D. Gerten, 2006. Life-history traits of lake plankton species may govern their phenological response to climate warming. Global Change Biology 12: 652–661.

    Article  Google Scholar 

  • Ambrosetti, W. & L. Barbanti, 2001. Temperature, mixing, heat content and stability in Lake Orta: a pluriannual investigation. Journal of Limnology 60: 60–68.

    Article  Google Scholar 

  • Ambrosetti, W., L. Barbanti & N. Sala, 2003. Residence time and physical processes in lake. Journal of Limnology 62: 1–15.

    Article  Google Scholar 

  • Anneville, O., S. Souissi, F. Ibanez, V. Ginot, J. C. Druart & N. Angeli, 2002. Temporal mapping of phytoplankton assemblages in Lake Geneva: annual and interannual changes in their patterns of succession. Limnology and Oceanography 45: 1355–1366.

    Article  Google Scholar 

  • Anneville, O., S. Gammeter & D. Straile, 2005. Phosphorus decrease and climate variability: mediators of synchrony in phytoplankton changes among European peri-alpine lakes. Freshwater Biology 50: 1731–1746.

    Article  CAS  Google Scholar 

  • Arhonditsis, G. B., M. Winder, M. T. Brett & D. E. Schindler, 2004. Patterns and mechanisms of phytoplankton variability in Lake Washington (USA). Water Research 38: 4013–4027.

    Article  CAS  PubMed  Google Scholar 

  • Baigún, C. & M. C. Marinone, 1995. Cold—temperate lakes of South America: do they fit Northern Hemisphere models? Archiv für Hydrobiolgie 135: 23–51.

    Google Scholar 

  • Bayer, T. K., 2013. Effects of climate change on two large, deep oligotrophic lakes in New Zealand. Ph.D thesis, University of Otago, Dunedin, 221.

  • Bayer, T. K., C. W. Burns & M. Schallenberg, 2013. Application of a numerical model to predict impacts of climate change on water temperatures in two deep, oligotrophic lakes in New Zealand. Hydrobiologia 713: 53–71.

    Article  Google Scholar 

  • Berger, S. A., S. Diehl, H. Stibor, G. Trommer, M. Ruhenstroth, A. Wild, A. Weigert, C. G. Jager & M. Striebel, 2007. Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton. Oecologia 150: 643–654.

    Article  PubMed  Google Scholar 

  • Bleiker, W. & F. Schanz, 1997. Light climate as the key factor controlling the spring dynamics of phytoplankton in Lake Zürich. Aquatic Sciences 59: 135–157.

    Article  Google Scholar 

  • Blenckner, T., 2005. A conceptual model of climate-related effects on lake ecosystems. Hydrobiologia 533: 1–14.

    Article  Google Scholar 

  • Boehrer, B., R. Fukuyama & K. Chikita, 2008. Stratification of very deep thermally stratified lakes. Geophysical Research Letters 35: L16405. doi:10.1029/2008GL034519.

    Article  Google Scholar 

  • Burns, C. W., 2013. Predictors of invasion success by Daphnia species: influence of food, temperature and species identity. Biological Invasions 15: 859–869.

    Article  Google Scholar 

  • Burns, C. W. & M. Schallenberg, 1998. Impacts of nutrients and zooplankton on the microbial food web of an ultra-oligotrophic lake. Journal of Plankton Research 20: 1501–1525.

    Article  Google Scholar 

  • Burns, C. W. & M. Schallenberg, 2001. Calanoid copepods versus cladocerans: consumer effects on protozoa in lakes of different trophic status. Limnology and Oceanography 46: 1558–1565.

    Article  CAS  Google Scholar 

  • Burns, N. M. & J. C. Rutherford, 1998. Results of monitoring New Zealand Lakes, 1992–1996. NIWA Client Report: MFE80216. Ministry for the Environment, Wellington.

  • Callieri, C., B. Modenutti, C. Queimaliños, R. Bertoni & E. Balseiro, 2007. Production and biomass of picophytoplankton and larger autotrophs in Andean ultraoligotrophic lakes: differences in light harvesting efficiency in deep layers. Aquatic Ecology 45: 511–523.

    Article  Google Scholar 

  • Carrick, H., R. P. Barbiero & M. Tuchman, 2001. Variation in Lake Michigan Plankton: temporal, spatial and historical trends. Journal of Great Lakes Research 27: 467–485.

    Article  Google Scholar 

  • Chapman, M. A., J. D. Green & V. H. Jolly, 1975. Zooplankton. In Jolly, V. H. & J. M. A. Brown (eds), New Zealand Lakes. Auckland University Press, Auckland: 209–230.

    Google Scholar 

  • Coats, R., G. Sahoo, J. Riverson, M. Costa-Cabral, M. Dettinger, B. Wolfe, J. Reuter, G. Schladow & C. R. Goldman, 2013. Historic and likely future impacts of climate change on Lake Tahoe, California-Nevada, USA. In Goldman, C. R., M. Kumagai & R. D. Robarts (eds), Climate Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies. John Wiley & Sons, New York: 231–254.

    Google Scholar 

  • Davies-Colley, R. J., 1988. Mixing depths in New Zealand lakes. New Zealand Journal of Marine and Freshwater Research 22: 517–528.

    Article  Google Scholar 

  • De Los Ríos, P., E. Hauenstein & M. Romero, 2012. Use of null models to explain crustacean zooplankton assemblages in waterbodies of Alerce Andino National Park (41°S, Chile). Crustaceana 85: 713–722.

    Article  Google Scholar 

  • Diehl, S., 2002. Phytoplankton, light, and nutrients in a gradient of mixing depths: theory. Ecology 83: 386–398.

    Article  Google Scholar 

  • Dokulil, M. T., K. Teubner, A. Jagsch, U. Nickus, R. Adrian, D. Straile, T. Jankowski, A. Herzig & J. Padisak, 2010. The impact of climate change on lakes in Central Europe. In George, G. (ed.), The Impact of Climate Change on European Lakes, Vol. 4. Springer, Netherlands: 387–409.

    Chapter  Google Scholar 

  • Duggan, I., J. Green & D. Burger, 2006. First New Zealand records of three non-indigenous zooplankton species: skistodiaptomus pallidus, Sinodiaptomus valkanovi, and Daphnia dentifera. New Zealand Journal of Marine and Freshwater Research 40: 561–569.

    Article  Google Scholar 

  • Duggan, I., K. Robinson, C. W. Burns, J. Banks & I. Hogg, 2012. Identifying invertebrate invasions using morphological and molecular analyses: north American Daphnia ‘pulex’ in New Zealand fresh waters. Aquatic Invasions 7: 585–590.

    Article  Google Scholar 

  • Duthie, H. C. & V. Stout, 1986. Phytoplankton periodicity of the Waitaki Lakes, New Zealand. Hydrobiologia 138: 221–236.

    Article  Google Scholar 

  • Fahnenstiel, G., S. Pothoven, H. Vanderploeg, D. Klarer, T. Nalepa & D. Scavia, 2010. Recent changes in primary production and phytoplankton in the offshore region of southeastern Lake Michigan. Journal of Great Lakes Research 36: 20–29.

    Article  Google Scholar 

  • Feuchtmayr, H., S. J. Thackeray, I. D. Jones, M. De Ville, J. Fletcher, B. E. N. James & J. Kelly, 2011. Spring phytoplankton phenology–are patterns and drivers of change consistent among lakes in the same climatological region? Freshwater Biology 57: 331–344.

    Article  Google Scholar 

  • Findlay, D. L., S. E. M. Kasian, M. P. Stainton, K. Beaty & M. Lyng, 2001. Climatic influences on algal populations of boreal forest lakes in the Experimental Lakes Area. Limnology and Oceanography 46: 1784–4793.

    Article  Google Scholar 

  • Flint, E., 1975. Phytoplankton in some New Zealand lakes. In Jolly, V. & J. M. A. Brown (eds), New Zealand Lakes. Auckland University Press and Oxford University Press, Oxford: 161–192.

    Google Scholar 

  • Gallina, N., O. Anneville & M. Beniston, 2011. Impacts of extreme air temperatures on cyanobacteria in five deep peri-Alpine lakes. Journal of Limnology 70: 186–196.

    Article  Google Scholar 

  • Green, J. D., A. B. Viner & D. J. Lowe, 1987. The effects of climate on lake mixing patterns and temperatures. In Viner, A. B. (ed.), Inland Waters of New Zealand. Department of Scientific and Industrial Research, Bangalore: 65–96.

    Google Scholar 

  • Goldman, C., & A. D. Jassby, 1990. Spring mixing and annual primary production at Lake Tahoe, California-Nevada. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 24: 504.

    Google Scholar 

  • Goldman, C., A. Jassby & T. Powell, 1989. Interannual fluctuations in primary production: meteorological forcing at two subalpine lakes. Limnology and Oceanography 34: 310–323.

  • Guildford, S. J., H. A. Bootsma, E. J. Fee, R. E. Hecky & G. Patterson, 2000. Phytoplankton nutrient status and mean water column irradiance in Lakes Malawi and Superior. Aquatic Ecosystem Health and Management 3: 35–45.

    Article  Google Scholar 

  • Hadley, K., A. M. Paterson, R. I. Hall & J. P. Smol, 2013. Effects of multiple stressors on lakes in south-central Ontario: 15 years of change in lakewater chemistry and sedimentary diatom assemblages. Aquatic Sciences 75: 349–360.

    Article  CAS  Google Scholar 

  • Hamill, K., 2006. Snapshot of Lake Water Quality in New Zealand. Ministry for the Environment, Wellington.

    Google Scholar 

  • Hamilton, D. P., C. R. O’Brien, M. A. Burford, J. D. Brooks & C. G. McBride, 2010. Vertical distributions of chlorophyll in deep, warm monomictic lakes. Aquatic Sciences 72: 295–307.

    Article  CAS  Google Scholar 

  • Hamilton, D. P., C. G. McBride, D. Özkundakci, M. Schallenberg, P. Verburg, M. D. Winton, D. Kelly, C. Hendy & W. Ye, 2013. Effects of climate change on New Zealand Lakes. In Goldman, C. R., M. Kumagai & R. D. Robarts (eds), Climate Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies. John Wiley & Sons, New York: 337–366.

    Google Scholar 

  • Hampton, S., L. Izemeteva, M. Moore, S. Katz, B. Dennis & E. Silow, 2008. Sixty years of environmental change in the world’s largest freshwater lake–Lake Baikal, Siberia. Global Change Biology 14: 1–12.

    Article  Google Scholar 

  • Hylander, S., T. Jephson, K. Lebret, J. Von Einem, T. Fagerberg, E. Balseiro, B. Modenutti, M. S. Souza, C. Laspoumaderes, M. Jonsson, P. Ljungberg, A. Nicolle, P. A. Nilsson, L. Ranaker & L. A. Hansson, 2011. Climate-induced input of turbid glacial meltwater affects vertical distribution and community composition of phyto- and zooplankton. Journal of Plankton Research 33: 1239–1248.

    Article  Google Scholar 

  • Irwin, A., 1972. Lake Wakatipu. Bathymetry. In, Lake Chart Series. Department of Scientific and Industrial Research, Wellington.

  • Irwin, A., 1976. Lake Wanaka. Bathymetry. In, Lake Chart Series. Department of Scientific and Industrial Research, Wellington.

  • Jäger, C. G., S. Diehl & G. M. Schmidt, 2008. Influence of water-column depth and mixing on phytoplankton biomass, community composition, and nutrients. Limnology and Oceanography 53: 2361–2373.

    Article  Google Scholar 

  • James, M. R., M. Schallenberg, M. Gall & R. Smith, 2001. Seasonal changes in plankton and nutrient dynamics and carbon flow in the pelagic zone of a large, glacial lake: effects of suspended solids and physical mixing. New Zealand Journal of Marine and Freshwater Research 35: 239–253.

    Article  Google Scholar 

  • Jolly, H. & M. Chapman, 1977. The comparative limnology of some New Zealand lakes. 2 Plankton. New Zealand Journal of Marine and Freshwater Research 11: 307–340.

    Article  Google Scholar 

  • Katz, S. L., S. E. Hampton, L. R. Izmesteva & M. V. Moore, 2011. Influence of long-distance climate teleconnection on seasonality of water temperature in the world’s largest lake–Lake Baikal,Siberia. PLoS One 6: e14688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Kishimoto, N., S. Ichese, K. Suzuki & C. Yamamoto, 2013. Analysis of long-term variation in phytoplankton biovolume in the northern basin of Lake Biwa. Limnology 14: 117–128.

    Article  Google Scholar 

  • Leathwick, J. R., D. West, P. Gerbeaux, D. Kelly, H. Robertson, D. Brown, W. L. Chadderton & A.-G. Ausseil, 2014. Freshwater Ecosystems of New Zealand (FENZ) geodatabase. Department of Conservation, Wellington. http://www.doc.govt.nz/conservation/land-and-freshwater/freshwater/freshwater-ecosystems-of-new-zealand/

  • Livingstone, M. E., B. J. Biggs & J. S. Gifford, 1986. Inventory of New Zealand lakes. Water and Soil miscellaneous publication: 80–81.

  • Magnuson, J. J., B. J. Benson & T. K. Kratz, 1990. Temporal coherence in the limnology of a suite of lakes in Wisconsin. Freshwater Biology 23: 145–159.

    Article  Google Scholar 

  • Mida, J. L., D. Scavia, G. L. Fahnenstiel, S. A. Pothoven, H. A. Vanderploeg & D. M. Dolan, 2010. Long-term and recent changes in Southern Lake Michigan water quality with implications for present trophic status. Journal of Great Lakes Research 36: 42–49.

    Article  CAS  Google Scholar 

  • Modenutti, B., E. Balseiro, C. Queimalinos, D. A. Anon Suarez, M. C. Diegues & R. J. Albarino, 1998. Structure and dynamics of food webs in Andean Lakes. Lakes and Reservoirs: Research and Management 3: 179–186.

    Article  Google Scholar 

  • Modenutti, B., E. Balseiro, M. B. Navarro, C. Laspoumaderes, M. S. Souza & F. Cuassolo, 2013. Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable. Aquatic Sciences 75: 361–371.

    Article  CAS  Google Scholar 

  • Moss, B. D., 2012. Cogs in the endless machine: lakes, climate change and nutrient cycles: a review. Science of the Total Environment 434: 130–142.

    Article  CAS  PubMed  Google Scholar 

  • Moss, B., D. Mckee, D. Atkinson, S. E. Collings, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heyes & D. Wilson, 2003. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. Journal of Applied Ecology 40: 782–792.

    Article  Google Scholar 

  • Mullan, B., D. Wratt, S. Dean, M. Hollis, S. Allan, T. Williams & G. Kenny, 2008. Climate Change Effects and Impacts Assessment: A Guidance Manual for Local Government 2nd edition. New Zealand Ministry for the Environment, Wellington. http://www.mfe.govt.nz/sites/default/files/climate-change-effect-impacts-assessment-may08.pdf

  • Naismith, M. M., 1994. Phytoplankton distribution in a lake-river reservoir system, South Island, New Zealand. University of Otago, Dunedin. Post Graduate Diploma Thesis in Zoology.

  • O’Reilly, C. M., S. R. Alin, P.-D. Plisnier, A. S. Cohen & B. A. Mckee, 2003. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424: 766–768.

    Article  PubMed  Google Scholar 

  • Palmer, M. E., N. D. Yan & K. M. Somers, 2014. Climate change drives coherent patterns in physics and oxygen content in North American lakes. Climatic Change 124: 285–299.

    Article  CAS  Google Scholar 

  • Peeters, F., D. Livingstone, G.-H. Goudsmit, R. Kipfer & R. Forster, 2002. Modeling 50 years of historical temperature profiles in a large central European lake. Limnology and Oceanography 47: 186–197.

    Article  Google Scholar 

  • Peeters, F., D. Straile, A. Lorke & D. M. Livingstone, 2007. Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate. Global Change Biology 13: 1898–1909.

    Article  Google Scholar 

  • Pickrill, R. & J. Irwin, 1982. Predominant headwater inflow and its control of lake-river interactions in Lake Wakatipu. New Zealand Journal of Marine and Freshwater Research 16: 201–213.

    Article  Google Scholar 

  • Rae, R., C. Howard-Williams, I. I. Hawes, A. M. Schwarz & W. Vincent, 2001. Penetration of solar ultraviolet radiation into New Zealand lakes: influence of dissolved organic carbon and catchment vegetation. Limnology 2: 79–89.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute Nordbünte, Germany.

    Google Scholar 

  • Reynolds, C., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Riley, G. A., 1957. Phytoplankton of the North Central Sargasso Sea, 1950–52. Limnology and Oceanography 2: 252–270.

    Google Scholar 

  • Rühland, K., A. Paterson & J. P. Smol, 2008. Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Global Change Biology 14: 2740–2754.

    Google Scholar 

  • Rühland, K., A. Paterson & J. P. Smol, 2015. Lake diatom responses to warming: reviewing the evidence. Journal of Paleolimnology 54: 1–35.

    Article  Google Scholar 

  • Salmaso, N., 2005. Effects of climatic fluctuations and vertical mixing on the interannual trophic variability of Lake Garda, Italy. Limnology and Oceanography 50: 553–565.

    Article  Google Scholar 

  • Salmaso, N., 2010. Long-term phytoplankton community changes in a deep subalpine lake: responses to nutrient availability and climatic fluctuations. Freshwater Biology 55: 825–846.

    Article  Google Scholar 

  • Salmaso, N., R. Mosello, L. Garibaldi, F. Decet, M. C. Brizzio & P. Cordella, 2003. Vertical mixing as a determinant of trophic status in deep lakes: a case study from two lakes south of the Alps (Lake Garda and Lake Iseo). Journal of Limnology 62: 33–41.

    Article  Google Scholar 

  • Schallenberg, M. & C. W. Burns, 2001. Tests of autotrophic picoplankton as early indicators of nutrient enrichment in an ultra-oligotrophic lake. Freshwater Biology 46: 27–37.

    Article  Google Scholar 

  • Schallenberg, M., M. D. de Winton, P. Verburg, D. J. Kelly, K. D. Hamill & D. P. Hamilton, 2013. Ecosystem services of lakes. In Dymond, J. R. (ed.), Ecosystem Services in New Zealand: Conditions and Trends. Manaaki Whenua Press, Lincoln: 203–225.

    Google Scholar 

  • Schallenberg, M., M. James, I. I. Hawes & C. Howard-Williams, 1999. External forcing by wind and turbid inflows on a deep glacial lake and implications for primary production. New Zealand Journal of Marine and Freshwater Research 33: 311–331.

    Article  Google Scholar 

  • Schindler, D. W., 1987. Detecting ecosystem responses to anthropogenic stress. Canadian Journal of Fisheries and Aquatic Sciences 44(Suppl. 1): 6–25.

    Article  CAS  Google Scholar 

  • Schneider, P. & S. J. Hook, 2010. Space observations of inland water bodies show rapid surface warming since 1985. Geophysical Research Letters 37: L22405.

    Article  Google Scholar 

  • Sommer, U. & A. Lewandowska, 2011. Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Global Change Biology 17: 154–162.

    Article  Google Scholar 

  • Sommer, U., R. Adrian, L. De Senerpont Domis, J. J. Elser, U. Gaedke, B. Ibelings, E. Jeppesen, M. Lürling, J. C. Molinero, W. M. Mooij, E. Van Donk & M. Winder, 2012. Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annual Review of Ecology, Evolution, and Systematics 43: 429–448.

    Article  Google Scholar 

  • Sorvari, S., A. Korhola & R. Thompson, 2002. Lake diatom response to recent Arctic warming in Finnish Lappland. Global Change Biology 8: 171–181.

    Article  Google Scholar 

  • Soto, D., 2002. Oligotrophic patterns in southern Chilean lakes: the relevance of nutrients and mixing depth. Revista Chilena de Historia Natural 75: 377–393.

    Article  Google Scholar 

  • Soto, D. & L. Zuniga, 1991. Zooplankton assemblages of Chilean temperate lakes: a comparison with North American counterparts. Revista Chilena de Historia Natural 64: 569–581.

    Google Scholar 

  • Stich, H. B. & A. Brinker, 2010. Oligotrophication outweighs effects of global warming in a large, deep, stratified lake ecosystem. Global Change Biology 16: 877–888.

    Article  Google Scholar 

  • Straile, D., 2005. Food webs in lakes–seasonal dynamics and the impact of climate variability. In Belgrano, A. (ed.), Aquatic Food Webs–An Ecosystem Approach. Oxford University Press, Oxford: 41–50.

    Google Scholar 

  • Straile, D., D. Livingstone, G. Weyhenmeyer & D. George, 2003. The response of freshwater ecosystems to climate variability associated with the North Atlantic Oscillation. In Hurrell, Y. K. W., G. Ottersen & M. Visbeck (eds), The North Atlantic Oscillation–Climatic Significance and Environmental Impact. AGU Geophysical Monograph Series, Salt Lake: 263–279.

    Chapter  Google Scholar 

  • Tirok, K. & U. Gaedke, 2007. The effect of irradiance, vertical mixing and temperature on spring phytoplankton dynamics under climate change: long-term observations and model analysis. Oecologia 150: 625–642.

    Article  PubMed  Google Scholar 

  • Verburg, P., R. Hecky & H. Kling, 2003. Ecological consequences of a century of warming in Lake Tanganyika. Science 301: 505–507.

    Article  CAS  PubMed  Google Scholar 

  • Vincent, W., 1983. Phytoplankton production and winter mixing: contrasting effects in two oligotrophic lakes. Journal of Ecology 71: 1–20.

    Article  CAS  Google Scholar 

  • Viner, A. B., 1985. Thermal stability and phytoplankton distribution. Hydrobiologia 125: 47–69.

    Article  Google Scholar 

  • Walsby, A. E., 1997. Numerical integration of phytoplankton photosynthesis through time and depth in a water column. New Phytologist 136: 189–209.

    Article  CAS  Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological Analysis. Springer, New York.

    Book  Google Scholar 

  • Weyhenmeyer, G. A., 2001. Warmer winters: are planktonic algal populations in Sweden’s largest lakes affected? AMBIO 30: 565–571.

    Article  CAS  PubMed  Google Scholar 

  • White, E., M. Downes, M. M. Gibbs, L. Kemp, L. Mackenzie & G. Payne, 1980. Aspects of the physics, chemistry, and phytoplankton biology of Lake Taupo. New Zealand Journal of Marine and Freshwater Research 14: 139–148.

    Article  CAS  Google Scholar 

  • Winder, M. & D. E. Schindler, 2004a. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.

    Article  Google Scholar 

  • Winder, M. & D. E. Schindler, 2004b. Climatic effects on the phenology of lake processes. Global Change Biology 10: 1844–1856.

    Article  Google Scholar 

  • Winder, M. & D. Hunter, 2008. Temporal organization of phytoplankton communities linked to physical forcing. Oecologia 156: 179–192.

    Article  PubMed  Google Scholar 

  • Winder, M., J. E. Reuter & S. G. Schladow, 2009. Lake warming favours small-sized planktonic diatom species. Proceedings of the Royal Society B 276: 427–435.

    Article  PubMed  PubMed Central  Google Scholar 

  • Winder, M., S. Berger, A. Lewandowska, N. Aberle, K. Lengfellner, U. Sommer & S. Diehl, 2012. Spring phenological responses of marine and freshwater plankton to changing temperature and light conditions. Marine Biology 159: 2491–2501.

    Article  Google Scholar 

Download references

Acknowledgments

We thank all who assisted with field and lab work, especially Nicky McHugh. We also appreciate the logistical assistance of the Otago Regional Council (ORC) and Fish and Game Otago; we thank the National Institute for Water and Atmospheric Research (NIWA Ltd) and the ORC for providing climate and lake monitoring data, respectively. We are grateful to two reviewers whose suggestions have been very helpful in improving our paper. The research was funded by the Department of Zoology, University of Otago, a University of Otago Doctoral Scholarship (to TKB), the Ministry of Business, Innovation and Employment and the National Institute of Water and Atmospheric Research (to MS and CWB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn W. Burns.

Additional information

Handling editor: Judit Padisák

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayer, T.K., Schallenberg, M. & Burns, C.W. Contrasting controls on phytoplankton dynamics in two large, pre-alpine lakes imply differential responses to climate change. Hydrobiologia 771, 131–150 (2016). https://doi.org/10.1007/s10750-015-2625-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2625-2

Keywords

Navigation