Skip to main content
Log in

Trophic interactions in an austral temperate ephemeral pond inferred using stable isotope analysis

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Ephemeral ponds are vulnerable aquatic habitats which are difficult to protect given their dynamic nature and sensitivity to degradation during dry periods. Little information is available on these habitats in austral regions, with almost no information on food-web structure and complexity. The study aimed to assess trophic interactions among dominant organisms in an ephemeral pond food web, and investigate the importance of autochthonous and allochthonous carbon, using 13C and 15N isotopes. Results of the investigation suggest that the food web comprised four trophic levels, with the top predators being Notonectids (Notonecta sp.) and diving beetles (Cybister tripunctatus (Olivier)). Intermediary trophic levels comprised zooplankton (daphniids and copepodids), macroinvertebrates (e.g. micronectids and molluscs) and tadpoles. Generalist feeders dominated the higher trophic levels (>3) with specialists comprising the lower trophic levels (≤3). The consumers preferred autochthonous fine particulate organic matter, epiphyton and submerged macrophyte organic matter sources over allochthonous sources. Autochthonous organic matter was transferred to the food web via zooplankton and select macroinvertebrates including Micronecta sp. and Physa sp. The food-web structure within the pond appeared to reflect the secondary stage of trophic structural complexity in the evolution of ephemeral ponds over the course of their hydro-period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrantes, K. G., A. Barnett & S. Bouillon, 2014. Stable isotope-based community metrics as a tool to identify patterns in food web structure in east African estuaries. Functional Ecology 28: 270–282.

    Article  Google Scholar 

  • Allanson, B. R., R. C. Hart, J. H. O’Keeffe & R. D. Robarts, 1990. Planktonic and benthic invertebrates. In Allanson, B. R. (ed.), Inland Waters of Southern Africa: An Ecological Perspective. Springer, Dordrecht.

    Google Scholar 

  • Alp, M., B. L. Peckarsky, S. M. Bernasconi & C. T. Robinson, 2013. Shifts in isotopic signatures of animals with complex life-cycles can complicate conclusions on cross-boundary trophic links. Aquatic Science 75: 595–606.

    Article  Google Scholar 

  • APHA, 1995. Standard Methods for the Examination of Water and Wastewater. Port City Press, Baltimore.

    Google Scholar 

  • Arcagni, M., L. M. Campbell, M. A. Arribére, K. Kyser, K. Klassen, R. Casaux, M. L. Miserendino & S. G. Guevara, 2013. Food web structure in a double-basin ultra-oligotrophic lake in Northwest Patagonia, Argentina, using carbon and nitrogen stable isotopes. Limnologica 43: 131–142.

    Article  CAS  Google Scholar 

  • Arnér, M., S. Koivisto, J. Norberg & N. Kautsky, 1998. Trophic interactions in rockpool food webs: regualtion of zooplankton and phytoplankton by Notonecta and Daphnia. Freshwater Biology 39: 79–90.

    Article  Google Scholar 

  • Arnott, S. E. & M. J. Vanni, 1993. Zooplankton assemblages in fishless bog lakes: influence of biotic and abiotic factors. Ecology 74: 2361–2380.

    Article  Google Scholar 

  • Baiser, B., R. S. Ardeshiri & A. M. Ellison, 2011. Species richness and trophic diversity increase decomposition in a co-evolved food web. PLoS ONE 6: e20672.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bergamino, L., T. Dalu, A. K. Whitfield, L. Carassou & N. B. Richoux, 2014. Stable isotope evidence of food web connectivity by a top predator (Argyrosomus japonicus: Sciaenidae: Teleostei) in the Kowie Estuary, South Africa. African Journal of Marine Science 36: 207–213.

    Article  Google Scholar 

  • Blaustein, L., 1998. Influence of the predatory backswimmer, Notonecta maculata, on invertebrate community structure. Ecological Entomology 23: 246–252.

    Article  Google Scholar 

  • Blaustein, L. & S. S. Schwartz, 2001. Why study ecology in temporary pools? Israel Journal of Zoology 47: 303–312.

    Article  Google Scholar 

  • Brendonck, L. & L. De Meester, 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491: 65–84.

    Article  Google Scholar 

  • Brönmark, C. & L.-A. Hansson, 2005. The Biology of Lakes and Ponds (Biology of Habitats), 2nd ed. Oxford University Press, Oxford.

    Google Scholar 

  • Carpenter, S. R., J. J. Cole, M. L. Pace, M. V. De Bogert, D. L. Bade, D. Bastviken, C. M. Gille, J. R. Hodgson, J. F. Kitchell & E. S. Kritzberg, 2005. Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86: 2737–2750.

    Article  Google Scholar 

  • De Meester, L., S. Declerck, R. Stoks, G. Louette, F. van de Meutter, T. de Brie, E. Michaels & L. Brendonck, 2005. Ponds and pools as ecological model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation and Freshwater Ecosystems 15: 715–725.

    Article  Google Scholar 

  • Dillon, R. T., 2000. The Ecology of Freshwater Mollusks. Cambridge University Press, New York.

    Book  Google Scholar 

  • du Preez, L. H. & V. C. Carruthers, 2009. A Complete Guide to the Frogs of Southern Africa. Struik Nature, Cape Town.

    Google Scholar 

  • Fernando, C. H. & C. Y. Leong, 1963. Miscellaneous notes on the biology of Malayan Corixidae (Hemiptera: Heteroptera) and a study of the life histories of two species, Micronecta quadristrigata Bredd. and Agraptocorixa hyalinipennis (F.). Journal of Natural History 6: 545–558.

    Article  Google Scholar 

  • Ferreira, M., V. Wepener & J. H. J. van Vuren, 2012. Aquatic invertebrate communities of perennial pans in Mpumalanga, South Africa: a diversity and functional approach. African Invertebrates 53: 751–768.

    Article  Google Scholar 

  • Francis, T. B., D. E. Schindler, G. W. Holtgrieve, E. R. Larson, M. D. Scheuerell, B. X. Semmens & E. J. Ward, 2011. Habitat structure determines resource use by zooplankton in temperate lakes. Ecology Letters 14: 364–372.

    Article  PubMed  Google Scholar 

  • Froneman, P. W., 2002. Food web structure in three contrasting estuaries determined using stable isotope (δ13C) analysis. African Journal of Aquatic Sciences 27: 107–115.

    Article  Google Scholar 

  • Fry, B., 1991. Stable isotope diagrams of freshwater food webs. Ecology 72: 2293–2297.

    Article  Google Scholar 

  • Fry, B., 2006. Stable isotope ecology. Springer, New York.

    Book  Google Scholar 

  • Gamble, D. & J. J. Mitsch, 2009. Hydro-periods of created and natural vernal pools in central Ohio: a comparison of depth and duration of inundation. Wetlands Ecology and Management 17: 385–395.

    Article  Google Scholar 

  • Gebo, N. A. & R. P. Brooks, 2012. Hygreomorphic (HGM) assessments of mitigation sites compared to natural reference wetlands in Pennsylvania. Wetlands 32: 321–331.

    Article  Google Scholar 

  • Gerber, A. & M. J. M. Gabriel, 2002. Aquatic Invertebrates of South African Rivers: Field Guide. Institute for Water Quality Studies, Pretoria.

    Google Scholar 

  • Giller, P. S., 1986. The natural diet of the Notonectidae: field trials using electrophoresis. Ecological Entomology 11: 163–172.

    Article  Google Scholar 

  • Harding, W. R. & R. C. Hart, 2013. Food-web structure in the hypertrophic Rietvlei Dam based on stable isotope analysis: specific and general implications for reservoir biomanipulation. Water SA 39: 615–626.

    Article  Google Scholar 

  • Hecky, R. E. & R. H. Hesslein, 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society 14: 631–653.

    Article  Google Scholar 

  • Heyer, W. R., R. W. McDiarmid & D. L. Weigman, 1975. Tadpoles, predation and pond habitats in the tropics. Biotropica 7: 100–111.

    Article  Google Scholar 

  • Hill, J. M., R. W. Jones, M. P. Hill & O. L. F. Weyl, 2015. Comparisons of isotopic niche widths of some invasive and indigenous fauna in a South African river. Freshwater Biology 60: 893–902.

    Article  Google Scholar 

  • Huang, I.-Y., Y.-S. Lin, C.-P. Chen & H.-L. Hsieh, 2007. Food web structure of a subtropical headwater stream. Marine and Freshwater Research 58: 596–607.

    Article  Google Scholar 

  • Jackson, A. L., R. Inger, A. C. Parnell & S. Bearshop, 2011. Comparing isotopic niche widths among and within communities: SIBER − stable isotope Bayesian ellipses in R. Journal of Animal Ecology 80: 595–602.

    Article  PubMed  Google Scholar 

  • Klecka, J., 2014. The role of a water bug, Sigara striata, in freshwater food webs. PeerJ 2: e389.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kopprio, G. A., G. Kattner, R. H. Freije, S. J. de Paggi & R. J. Lara, 2014. Seasonal baseline of nutrients and stable isotopes in a saline lake of Argentina: biogeochemical processes and river runoff effects. Environmental Monitoring and Assessment 186: 3139–3148.

    Article  PubMed  CAS  Google Scholar 

  • Layman, C. A., J. P. Quattrochi, C. M. Peyer & J. E. Allgeier, 2007. Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecology Letters 10: 937–944.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lencioni, V., 2004. Survival strategies of freshwater insects in cold environments. Journal of Limnology 63: 45–55.

    Article  Google Scholar 

  • Mao, Z., X. Gu, Q. Zeng, L. Zhou & M. Sun, 2012. Food web structure of a shallow eutrophic lake (Lake Taihu, China) assessed by stable isotope analysis. Hydrobiologia 683: 173–183.

    Article  CAS  Google Scholar 

  • Marcus, V. & S. C. Weeks, 1997. The effects of pond duration on the life history traits of an ephemeral pond crustacean, Eulimnadia texana. Hydrobiologia 359: 213–221.

    Article  Google Scholar 

  • Mazunder, A., 1994. Patterns of algal biomass in dominant odd- versus even-link lake ecosystems. Ecology 75: 1141–1149.

    Article  Google Scholar 

  • McCutchan Jr, J. H., W. M. Lewis Jr, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.

    Article  CAS  Google Scholar 

  • Measey, G. J., 1998. Diet of feral Xenopus laevis (Daudin) in South Wales, U.K. Journal of Zoology 246: 287–298.

    Article  Google Scholar 

  • Ohba, S., 2009. Feeding habits of the diving beetle larvae, Cybister brevis Aubé (Coleoptera: Dytiscidae) in Japanese wetlands. Applied Entomology and Zoology 44: 447–453.

    Article  Google Scholar 

  • O’Neil, B. J. & J. H. Thorp, 2014. Untangling food-web structure in an ephemeral ecosystem. Freshwater Biology 59: 1462–1473.

    Article  Google Scholar 

  • O’Reilly, C. M., R. E. Hecky, A. S. Cohen & P.-D. Plisnier, 2002. Interpreting stable isotopes in food webs: recognizing the role of time averaging at different trophic levels. Limnology and Oceanography 47: 306–309.

    Article  Google Scholar 

  • Pace, M. L., J. J. Cole, S. R. Carpenter & J. F. Kitchell, 1999. Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution 14: 483–488.

    Article  PubMed  Google Scholar 

  • Palik, B. D., P. Baxter & C. Kern, 2006. Upland forest linkages to seasonal wetlands: litter flux, processing and food quality. Ecosystems 9: 142–151.

    Article  Google Scholar 

  • Parnell, A. C., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source partitioning using stable isotopes: coping with too much variation. PLOS one 5: e9672.

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips, D. L., S. D. Newsome & J. W. Gregg, 2005. Combining sources in stable isotope mixing models: alternative methods. Oecologia 144: 520–527.

    Article  PubMed  Google Scholar 

  • Phillips, D. L., R. Inger, B. Stuart, A. L. Jackson, J. W. Moore, A. C. Parnell & B. X. Semmens, 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92: 823–835.

    Article  Google Scholar 

  • Pinceel, T., B. Vanschoenwinkel & L. Brendonck, 2013. Flexible dispersal dimorphism in zooplankton resting eggs: an example of repeated phenotypic coin flipping? Biological Journal of the Linnean Society 110: 749–756.

    Article  Google Scholar 

  • Pinder, L. C. V., 1986. Biology of freshwater chironomidae. Annual Review of Entomology 31: 1–23.

    Article  Google Scholar 

  • Pinnegar, J. K. & N. V. C. Polunin, 1999. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Functional Ecology 13: 225–231.

    Article  Google Scholar 

  • Polačik, M., R. Blažek, R. Řežucha, M. Vrtílek, E. Terzibasi Tozzini & M. Reichard, 2014. Alternative intrapopulation life-history strategies and their trade-offs in an African annual fish. Journal of Evolutionary Biology 27: 854–865.

    Article  PubMed  Google Scholar 

  • Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • Proctor, H. & G. Pritchard, 1989. Neglected predators: water mites (Acari: Parasitengona: Hydrachnellae) in freshwater communities. Journal of the North American Benthological Society 8: 100–111.

    Article  Google Scholar 

  • Riato, L., C. van Ginkel & J. C. Taylor, 2014. Zooplankton and diatoms of temporary and permanent freshwater pans in the Mpumalanga Highveld region, South Africa. African Zoology 49: 113–127.

    Article  Google Scholar 

  • Sinchembe, M. & W. N. Ellery, 2010. Human impacts on hydrological health and the provision of ecosystem services: a case study of the eMthonjeni–Fairview Spring Wetland, Grahamstown, South Africa. African Journal of Aquatic Science 35: 227–239.

    Article  Google Scholar 

  • SPSS Inc. 2007. SPSS Release 16.0.0 for Windows. Polar Engineering and Consulting. Chicago, SPSS Inc.

  • Suárez-Morales, E., R. J. Wasserman & T. Dalu, 2015. A new species of Lovenula Schmeil (Copepoda, Diaptomidae) from the Eastern Cape province of South Africa. Crustaceana 88: 324–342.

    Article  Google Scholar 

  • Vanni, M. J., 1986. Competition in zooplankton communities: suppression of small species by Daphnia pulex. Limnology and Oceanography 31: 1039–1056.

    Article  CAS  Google Scholar 

  • Vanni, M. J., 1988. Freshwater zooplankton community structure: introduction of large invertebrate predators and large herbivores to a small species community. Canadian Journal of Fisheries and Aquatic Sciences 45: 1758–1770.

    Article  Google Scholar 

  • Vareschi, E. & J. Jacobs, 1985. The ecology of Lake Nakuru. Oecologia 65: 412–424.

    Article  Google Scholar 

  • Yachi, S. & M. Loreau, 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the inárance hypothesis. Proceeding of the National Academy of Science 96: 1463–1468.

    Article  CAS  Google Scholar 

  • Yang, C., G. M. Wilkinson, J. J. Cole, S. A. Macko & M. L. Pace, 2014. Assigning hydrogen, carbon, and nitrogen isotope values for phytoplankton and terrestrial detritus in aquatic food web studies. Inland Waters 4: 233–242.

    Article  CAS  Google Scholar 

  • Zacharias, I., E. Dimitriou, A. Dekker & E. Dorsman, 2007. Overview of temporary ponds in the Mediterranean region: Threats, management and conservation issues. Journal of Environmental Biology 28: 1–9.

    PubMed  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to the memory of Sven Kaehler who carried out the stable isotope analysis. This study was made possible through financial and logistical support from Rhodes University and the National Research Foundation (NRF) of South Africa (UID: 77444). We thank PSR Weyl and T Bellingan (Department of Zoology and Entomology, Rhodes University) for assistance with macrophyte and macroinvertebrate identification, respectively, and Eduardo Suárez-Morales of El Colegio La Frontera Sur (ECOSUR), Mexico for copepod identification. In addition, we extend our gratitude to the White family for granting us access to their property. We thank the handling editor Mariana Meerhoff for her patience and two anonymous reviewers for their work and time through providing insightful and useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatenda Dalu.

Additional information

Handling editor: Mariana Meerhoff

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalu, T., Weyl, O.L.F., Froneman, P.W. et al. Trophic interactions in an austral temperate ephemeral pond inferred using stable isotope analysis. Hydrobiologia 768, 81–94 (2016). https://doi.org/10.1007/s10750-015-2533-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2533-5

Keywords

Navigation