Skip to main content
Log in

Functional approach based on morphology as a model of phytoplankton variability in a subtropical floodplain lake: a long-term study

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Long-term phytoplankton dynamics in a floodplain lake, between periods of limnophase and potamophase was studied using the morphology-based functional classification (MBFG). The work was carried out to test the hypothesis that the temporal distribution of MBFGs is influenced by the hydrosedimentological regime of the Paraná River, and that these differences can be registered by analyzing the dominant MBFGs in the two periods. Samples were taken in an isolated floodplain lake on the Upper Paraná River floodplain, Brazil, from 2000 to 2012, and water level, water temperature, conductivity, pH, dissolved-oxygen, euphotic zone, maximum depth, and nutrients were used to explain the distribution of MBFGs. 478 taxa were identified and distributed in seven MBFGs (I–VII). MBFG V (flagellates algae) and VI (diatoms) showed 100% frequency of occurrence. MBFG II was associated exclusively with the limnophase; MBFG IV and VII were associated with limnophase periods with higher pH and dissolved-oxygen content; and MBFG I, III, V, and VI were associated with limnophase and potamophase, mainly associated with transparency, nutrients, and conductivity. The MBFG approach represented the trends of each group in terms of its occurrence and biovolume, according to the hydrosedimentological regime, providing broad-scale information on changes in the phytoplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abonyi, A., M. Leitão, I. Stankovi, G. Borics, G. Várbíró & J. Padisák, 2014. A large river (River Loire, France) survey to compare phytoplankton functional approaches: do they display river zones in similar ways? Ecological Indicators 46: 11–22.

    Article  Google Scholar 

  • Agostinho, A. A., L. Rodrigues, L. C. Gomes, S. M. Thomaz & L. E. Miranda, 2004. Structure and Functioning of the Paraná River and its Floodplain. Eduem, Maringá.

    Google Scholar 

  • Agostinho, A. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology 68(4, Suppl.): 1119–1132.

    Article  CAS  Google Scholar 

  • Bortolini, J. C., V. M. Bovo-Scomparin, A. C. M. de Paula, G. A. Moresco, L. M. Reis, S. Jati & L. C. Rodrigues, 2014a. Composition and species richness phytoplankton in a subtropical floodplain lake: a long-term study. Acta Limnologica Brasiliensia 26(3): 296–305.

    Google Scholar 

  • Bortolini, J. C., L. C. Rodrigues & S. Train, 2014b. Phytoplankton functional and morphological groups as indicators of environmental variability in a lateral channel of the Upper Paraná River floodplain. Acta Limnologica Brasiliensia 26(1): 98–108.

    Article  Google Scholar 

  • Bovo-Scomparin, V. M. & S. Train, 2008. Long-Term variability of the phytoplankton community in an isolated floodplain lake of the Ivinhema River State Park, Brazil. Hydrobiologia 610: 331–344.

    Article  Google Scholar 

  • Bovo-Scomparin, V. M., S. Train & L. C. Rodrigues, 2013. Influence of reservoirs to dispersion and seasonal variation of the phytoplankton community in the Upper Paraná River, Brazil. Hydrobiologia 702: 115–127.

    Article  CAS  Google Scholar 

  • Brasil, J. & V. L. M. Huszar, 2011. O papel dos traços funcionais na ecologia do fitoplâncton continental. Oecologia Australis 15(4): 799–834.

    Article  Google Scholar 

  • CPTEC, 2012. Centro de Previsão do tempo e estudos climáticos. Available at: http://www.cptec.inpe.br/.

  • Dajoz, R., 2005. Princípios de Ecologia. Artmed, Porto Alegre.

    Google Scholar 

  • De Emiliani, M. O. G., 1997. Effects of water level fluctuations on phytoplankton in a river-floodplain lake system (Paraná River, Argentina). Hydrobiologia 357: 1–15.

    Article  Google Scholar 

  • Cole, G. A., 1994. Textbook of Limnology. Waveland Press Inc, Long Grove.

    Google Scholar 

  • Giné, M. F., H. Bergamim, E. A. G. Zagatto & B. F. Reis, 1980. Simultaneus determination of nitrite and nitrate by flow injection analysis. Analytica Chimica Acta 114: 191–197.

    Article  Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. Ohstad, 1978. Methods for Physical and Chemical Analysis of Freshwater. Blackwell Scientific Publication, Oxford.

    Google Scholar 

  • Granado, D. C. & R. Henry, 2014. Phytoplankton community response to hydrological variations in oxbow lakes with different levels of connection to a tropical river. Hydrobiologia 721: 223–238.

    Article  CAS  Google Scholar 

  • Hu, R., B. Han & L. Naselli-Flores, 2013. Comparing biological classifications of freshwater phytoplankton: a case study from South China. Hydrobiologia 701: 219–233.

    Article  Google Scholar 

  • Huszar, V. L. M. & C. S. Reynolds, 1997. Phytoplankton periodicity and sequences of dominance in an Amazonian flood-plain lake (Lago Batata, Pará, Brazil): responses to gradual environmental change. Hydrobiologia 346: 169–181.

    Article  Google Scholar 

  • Ibanez, M. S. R., 1998. Phytoplankton composition and abundance of a central Amazonian floodplain lake. Hydrobiologia 362: 79–83.

    Article  Google Scholar 

  • Izaguirre, I., I. O´Farrell, F. Unrein, R. Sinistro, M. S. Afonso & G. Tell, 2004. Algal assemblages across a wetland, from a shallow lake to relictual oxbow lakes (Lower Paraná River, South America). Hydrobiologia 511: 25–36.

    Article  CAS  Google Scholar 

  • Izaguirre, I., L. Allende, R. Escaray, J. Bustingorry, G. Pérez & G. Tell, 2012. Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states. Hydrobiologia 698: 203–216.

    Article  CAS  Google Scholar 

  • Koroleff, K., 1978. Determination of ammonia. In Grasshoff, K. & K. Kremling (eds), Methods of Seawater Analysis. Verlag Chemie, Winhein.

    Google Scholar 

  • Jamil, T., C. Kruk & C. J. F. ter Braak, 2014. A unimodal species response model relating traits to environment with application to phytoplankton communities. PLOS One 9(5): 1–14.

    Article  Google Scholar 

  • Jo, B. Y., W. Shin & S. M. Boo, 2011. Studies on ultrastructure and three-gene phylogeny of the genus Mallomonas (Synurophyceae). Journal of Phycology 47: 415–425.

    Article  Google Scholar 

  • Kamjunke, N., T. Henrichs & U. Gaedke, 2007. Phosphorus gain by bacterivory promotes the mixotrophic flagellate Dinobryon spp. during re-oligotrophication. Journal of Plankton Research 29(1): 39–46.

    Article  CAS  Google Scholar 

  • Kruk, C. & A. M. Segura, 2012. The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia 698: 191–202.

    Article  CAS  Google Scholar 

  • Kruk, C., V. L. M. Huszar, E. H. M. Peeters, S. Bonilla, L. Costa, M. Lurling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Article  Google Scholar 

  • Kruk, C., E. H. M. Peeters, E. H. Van Nes, V. L. M. Huszar, L. S. Costa & M. Scheffer, 2011. Phytoplankton community composition can be predicted best in terms of morphological groups. Limnology and Oceanography 56(1): 110–118.

    Article  Google Scholar 

  • Leira, M. & M. Cantonati, 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia 613: 171–184.

    Article  Google Scholar 

  • Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution and Systematics 39: 615–639.

    Article  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Lecren, 1958. The inverted microscope method of estimating algal number and the statistical basis of estimating by couting. Hydrobiologia 11: 980–985.

    Article  Google Scholar 

  • McCune, B. & M. J. Mefford, 1999. PC-ORD. Multivariate analysis of ecological data, version 4.0. MjM Software Design, Gleneden Blach, Oregon. Hydrobiologia 11: 980–985.

    Google Scholar 

  • McPhaden, M. J., S. E. Zebiak & M. H. Glantz, 2006. ENSO as an Integrating concept in earth science. Science 314: 1740–1745.

    Article  CAS  PubMed  Google Scholar 

  • Mihaljević, M., D. Špoljarić, F. Stević & T. Pfeiffer, 2013. Assessment of flood-induced changes of phytoplankton along a river–floodplain system using the morpho-functional approach. Environmental Monitoring and Assessment 185: 8601–8619.

    Article  PubMed  Google Scholar 

  • Mihaljević, M., F. Stević, D. Špoljarić & T. Žuna Pfeiffer, 2015. Spatial pattern of phytoplankton based on the Morphology-Based Functional approach along a river–floodplain gradient. River Research and Applications 31: 228–238.

    Article  Google Scholar 

  • Mormul, R. P., S. M. Thomaz, A. A. Agostinho, C. C. Bonecker & N. Mazzeo, 2012. Migratory benthic fishes may induce regime shifts in a tropical floodplain pond. Freshwater Biology 57: 1592–1602.

    Article  Google Scholar 

  • Naselli-Flores, L., J. Padisák & M. Albay, 2007. Shape and size in phytoplankton ecology: do they matter? Hydrobiologia 578: 157–161.

    Article  Google Scholar 

  • Neiff, J. J. & M. Neiff, 2003. PULSO: software para análisis de fenómenos recurrentes. Available at: http://www.neiff.com.ar.

  • O’Farrell, I., I. Izaguirre, G. Chaparro, F. Unrein, R. Sinistro, H. Pizarro, P. Rodríguez, P. T. Pinto, R. Lombardo & G. Tell, 2011. Water level as the main driver of the alternation between a free-floating plant and a phytoplankton dominated state: a long-term study in a floodplain lake. Aquatic Science 73: 275–287.

    Article  Google Scholar 

  • Pacheco, J. P., C. Iglesias, M. Meerhoff, C. Fosalba, G. Goyenola, F. Teixeira de Mello, S. García, M. Gelós & F. García-Rodrígues, 2010. Phytoplankton community structure in five subtropical shallow lakes with different trophic status (Uruguay): a morphology-based approach. Hydrobiologia 646: 187–197.

    Article  CAS  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and missue in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Pelicice, F. M., P. S. Pompeu & A. A. Agostinho, 2014. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries. doi:10.1111/faf.12089.

    Google Scholar 

  • Pinto, P. T., R. Lombardo, I. O´Farrell & I. Izaguire, 2014. Drivers shaping phytoplankton diversity and composition in a humid Pampean floodplain lake (natural reserve). Hydrobiologia. doi:10.1007/s10750-014-2008-0.

    Google Scholar 

  • R Development Core Team, 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org/.

  • Reynolds, C. S., V. L. M. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Rodrigues, L. C., S. Train, V. M. Bovo-Scomparin, S. Jati, C. C. J. Borsalli & E. Marengoni, 2009. Interannual variability of phytoplankton in the main rivers of the Upper Paraná River floodplain, Brazil: influence of upstream reservoirs. Brazilian Journal of Biology 69: 501–516.

    Article  CAS  Google Scholar 

  • Rodrigues, L. C., N. R. Simões, V. M. Bovo-Scomparin, S. Jati, N. F. Santana, M. C. Roberto & S. Train, 2015. Phytoplankton alpha diversity as an indicator of environmental changes in a neotropical floodplain. Ecological Indicators 48: 334–341.

    Article  CAS  Google Scholar 

  • Salmaso, N. & J. Padisák, 2007. Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.

    Article  Google Scholar 

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2015. Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60: 603–619.

    Article  Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes, 1st ed. Chapman and Hall, London.

    Google Scholar 

  • Segura, A. M., C. Kruk, D. Calliari & H. Fort, 2013. Use of a morphology-based functional approach to model phytoplankton community succession in a shallow subtropical lake. Freshwater Biology 58: 504–512.

    Article  Google Scholar 

  • Siver, P. A., A. P. Wolfe, F. J. Rohlf, W. Shin & B. Y. Jo, 2013. Combining geometric morphometrics, molecular phylogeny, and micropaleontology to assess evolutionary patterns in Mallomonas (Synurophyceae: Heterokontophyta). Geobiology 11: 127–138.

    Article  CAS  PubMed  Google Scholar 

  • Souza Filho, E. E. & J. C. Stevaux, 2004. Geology and geomorphology of the Baía-Curutuba-Ivinheima river complex. In Thomaz, S. M., A. A. Agostinho & N. S. Hahn (eds), The Upper Paraná River Floodplain: Physical Aspects, Ecology and Conservation. Backhuys Publishers, Leiden: 1–30.

    Google Scholar 

  • Souza Filho, E. E., P. C. Rocha, E. Comunello & J. C. Stevaux, 2004. Effects of the Porto Primavera Dam on physical environment of the downstream floodplain. In Thomaz, S. M., A. A. Agostinho & N. S. Hahn (eds), The Upper Paraná River Floodplain: Physical Aspects, Ecology and Conservation. Backhuys Publishers, Leiden: 55–74.

    Google Scholar 

  • Statisoft., 2005. Inc. Statistica (data analysis software system) version 7.1. Available in: www.statisoft.inc.

  • Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen phytoplankton-methodic. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 9: 1–39.

    Google Scholar 

  • Weithoff, G., 2003. The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplankton – a new understanding of phytoplankton ecology? Freshwater Biology 48: 1669–1675.

    Article  Google Scholar 

  • Žutinić, P., G. U. Marija, K. B. Koraljka, P. Andelka & J. Padisák, 2014. Morpho-functional classifications of phytoplankton assemblages of two deep karstic lakes. Hydrobiologia 740: 147–166.

    Article  Google Scholar 

Download references

Acknowledgments

We thank to the Long Term Ecological Research Program (Programa de Pesquisa Ecológica de Longa Duração, PELD/CNPq), the Center of Research in Limnology, Ichthyology, and Aquaculture of State University of Maringá (Nupélia/UEM) for logistical and financial support and CAPES and CNPq for post-graduate and post-doctoral scholarships. We would like to thank the Limnology Basic Laboratory/Nupelia for abiotic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jascieli Carla Bortolini.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortolini, J.C., Moresco, G.A., de Paula, A.C.M. et al. Functional approach based on morphology as a model of phytoplankton variability in a subtropical floodplain lake: a long-term study. Hydrobiologia 767, 151–163 (2016). https://doi.org/10.1007/s10750-015-2490-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2490-z

Keywords

Navigation