Skip to main content
Log in

Effect of spatial scale on macroinvertebrate assemblages along a Mediterranean river

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Although the assembly of stream macroinvertebrates is regulated by environmental heterogeneity at multiple spatial scales, field bioassessment studies that explicitly considered such scale-dependency are rare. Here, we investigated how large scale longitudinal gradients and local microhabitat structure jointly regulate the assembly of macroinvertebrate communities along a Mediterranean river. We compared community composition, metrics and functional feeding traits among three microhabitat categories (grain-size >20 cm; grain-size <20 cm; organic substrata) along three river sectors (up-, middle-, downstream), which reflected a gradient of anthropogenic modification. Macroinvertebrate assemblages varied mostly over the large-scale longitudinal gradient, but the influence of local micro-habitat features was evident at the within-sector scale. The effects of micro-habitats appeared stronger for feeding traits compared to simple taxonomic metrics, supporting the hypothesis that feeding traits are sensitive to river substratum character. Beta-diversity among micro-habitat types was smaller in the modified downstream sector, which supported more homogeneous communities. An explicit consideration of spatial scales is recommended when interpreting results from environmental assessment studies. In the Aniene River, the influence of local-scale substratum character on macroinvertebrates depended on the longitudinal gradient in anthropogenic pressure. Also, the findings suggest that taxonomic and functional metrics reflect processes operating at different spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual review of ecology, evolution, and systematics 35: 257–284.

    Article  Google Scholar 

  • Allan, J. D. & M. M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters. Springer Science & Business Media, New York.

    Book  Google Scholar 

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral ecology 26(1): 32–46.

    Google Scholar 

  • Anderson, M. J., K. E. Ellingsen & B. H. McArdle, 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9(6): 683–693.

    Article  PubMed  Google Scholar 

  • Arscott, D. B., K. Tockner & J. Ward, 2003. Spatio-temporal patterns of benthic invertebrates along the continuum of a braided Alpine river. Archiv für Hydrobiologie 158(4): 431–460.

    Article  CAS  Google Scholar 

  • Barnes, J. B., I. P. Vaughan & S. J. Ormerod, 2013. Reappraising the effects of habitat structure on river macroinvertebrates. Freshwater Biology 58(10): 2154–2167.

    Article  Google Scholar 

  • Bates, D., D. Sarkar, M. D. Bates & L. Matrix, 2007. The lme4 package. R package version 2(1): 74.

    Google Scholar 

  • Beisel, J.-N., P. Usseglio-Polatera, S. Thomas & J.-C. Moreteau, 1998. Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobiologia 389(1–3): 73–88.

    Article  Google Scholar 

  • Beisel, J.-N., P. Usseglio-Polatera & J.-C. Moreteau, 2000. The Spatial Heterogeneity of a River Bottom: A Key Factor Determining Macroinvertebrate Communities. Springer, Berlin.

    Google Scholar 

  • Boulton, A. J., C. G. Peterson, N. B. Grimm & S. G. Fisher, 1992. Stability of an aquatic macroinvertebrate community in a multiyear hydrologic disturbance regime. Ecology 73: 2192–2207.

    Article  Google Scholar 

  • Carneiro, F. M., L. M. Bini & L. C. Rodrigues, 2010. Influence of taxonomic and numerical resolution on the analysis of temporal changes in phytoplankton communities. Ecological Indicators 10(2): 249–255.

    Article  Google Scholar 

  • Chase, J. M., 2007. Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences 104(44): 17430–17434.

    Article  CAS  Google Scholar 

  • Chase, J. M., 2014. Spatial scale resolves the niche versus neutral theory debate. Journal of vegetation science 25(2): 319–322.

    Article  Google Scholar 

  • Chevenet, F., S. Doledec & D. Chessel, 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater biology 31(3): 295–309.

    Article  Google Scholar 

  • Costa, S. S. & A. S. Melo, 2008. Beta diversity in stream macroinvertebrate assemblages: among-site and among-microhabitat components. Hydrobiologia 598(1): 131–138.

    Article  Google Scholar 

  • De Rosario-Martinez, H., 2013. Phia: post-hoc interaction analysis. R package version 01-3.

  • Dolédec, S., N. Phillips, M. Scarsbrook, R. H. Riley & C. R. Townsend, 2006. Comparison of structural and functional approaches to determining landuse effects on grassland stream invertebrate communities. Journal of the North American Benthological Society 25(1): 44–60.

    Article  Google Scholar 

  • Donohue, I., L. A. Donohue, B. N. Ainín & K. Irvine, 2009. Assessment of eutrophication pressure on lakes using littoral invertebrates. Hydrobiologia 633(1): 105–122.

    Article  CAS  Google Scholar 

  • European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy Official Journal 22 December 2000 L 327/1. European Commission, Brussels.

    Google Scholar 

  • Feeley, M., R. J. DeRubeis & L. A. Gelfand, 1999. The temporal relation of adherence and alliance to symptom change in cognitive therapy for depression. Journal of consulting and clinical psychology 67(4): 578.

    Article  CAS  PubMed  Google Scholar 

  • Gallardo, B., S. Doledec, A. Paillex, D. B. Arscott, F. Sheldon, F. Zilli, S. Merigoux, E. Castella & F. A. Comín, 2014. Response of benthic macroinvertebrates to gradients in hydrological connectivity: a comparison of temperate, subtropical, Mediterranean and semiarid river floodplains. Freshwater Biology 59(3): 630–648.

    Article  Google Scholar 

  • García-Roger, E. M., M. D. M. Sánchez-Montoya, N. Cid, S. Erba, I. Karaouzas, I. Verkaik, M. Rieradevall, R. Gómez, M. L. Suárez & M. R. Vidal-Abarca, 2013. Spatial scale effects on taxonomic and biological trait diversity of aquatic macroinvertebrates in Mediterranean streams. Fundamental and Applied Limnology/Archiv für Hydrobiologie 183(2): 89–105.

    Article  Google Scholar 

  • Heino, J. & J. Soininen, 2007. Are higher taxa adequate surrogates for species-level assemblage patterns and species richness in stream organisms? Biological Conservation 137(1): 78–89.

    Article  Google Scholar 

  • Heino, J., P. Louhi & T. Muotka, 2004. Identifying the scales of variability in stream macroinvertebrate abundance, functional composition and assemblage structure. Freshwater Biology 49(9): 1230–1239.

    Article  Google Scholar 

  • Heino, J., D. Schmera & T. Erős, 2013. A macroecological perspective of trait patterns in stream communities. Freshwater Biology 58(8): 1539–1555.

    Article  Google Scholar 

  • Hering, D., O. Moog, L. Sandin & P. F. Verdonschot, 2004. Overview and application of the AQEM assessment system. Hydrobiologia 516(1–3): 1–20.

    Article  Google Scholar 

  • Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics 6: 65–70.

    Google Scholar 

  • Huamantinco, A. & J. Nessimian, 1999. Estrutura e distribuição espacial da comunidade de larvas de Trichoptera (Insecta) em um tributário de primeira ordem do Rio Paquequer, Teresópolis. RJ. Acta Limnologica Brasiliensia 11(2): 1–16.

    Google Scholar 

  • Kelly, D., J. Dick, W. Montgomery & C. MacNeil, 2003. Differences in composition of macroinvertebrate communities with invasive and native Gammarus spp. (Crustacea: Amphipoda). Freshwater Biology 48(2): 306–315.

    Article  Google Scholar 

  • Larsen, S. & S. Ormerod, 2010. Combined effects of habitat modification on trait composition and species nestedness in river invertebrates. Biological Conservation 143(11): 2638–2646.

    Article  Google Scholar 

  • Larsen, S., I. Vaughan & S. Ormerod, 2009. Scale-dependent effects of fine sediments on temperate headwater invertebrates. Freshwater Biology 54(1): 203–219.

    Article  CAS  Google Scholar 

  • Larsen, S., L. Mancini, G. Pace, M. Scalici & L. Tancioni, 2012. Weak concordance between fish and macroinvertebrates in Mediterranean streams. PloS one 7(12): e51115.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larsen, S., M. Scalici & L. Tancioni, 2015. Scale dependent biodiversity patterns in Mediterranean river catchments: a multi taxa approach. Aquatic Sciences. doi:10.1007/s00027-014-0390-3.

    Google Scholar 

  • Lenat, D. R. & M. T. Barbour, 1994. Using benthic macroinvertebrate community structure for rapid, cost-effective, water quality monitoring: rapid bioassessment. Biological monitoring of aquatic systems Lewis Publishers, Boca Raton: 187–215.

    Google Scholar 

  • Li, J., A. Herlihy, W. Gerth, P. Kaufmann, S. Gregory, S. Urquhart & D. P. Larsen, 2001. Variability in stream macroinvertebrates at multiple spatial scales. Freshwater Biology 46(1): 87–97.

    Article  Google Scholar 

  • Mancini, L., P. Formichetti, A. Anselmo, L. Tancioni, S. Marchini & A. Sorace, 2005. Biological quality of running waters in protected areas: the influence of size and land use. Biodiversity & Conservation 14(2): 351–364.

    Article  Google Scholar 

  • Manfrin, A., S. Larsen, L. Traversetti, G. Pace & M. Scalici, 2013. Longitudinal variation of macroinvertebrate communities in a Mediterranean river subjected to multiple anthropogenic stressors. International Review of Hydrobiology 98(3): 155–164.

    Article  CAS  Google Scholar 

  • Minshall, G., 1984. Aquatic insect-substratum relationships. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger Publishers, New York: 358–400.

    Google Scholar 

  • Mykrä, H., J. Heino & T. Muotka, 2007. Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Global Ecology and Biogeography 16(2): 149–159.

    Article  Google Scholar 

  • Nelson, S. M., 2011. Comparisons of macrophyte breakdown, associated plant chemistry, and macroinvertebrates in a wastewater dominated stream. International Review of Hydrobiology 96(1): 72–89.

    Article  CAS  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. Stevens & H. Wagner, 2013. Vegan: Community Ecology Package. R package version 2.0-7. http://www.CRANR-projectorg/package=vegan.

  • Olden, J. D., N. L. Poff, M. R. Douglas, M. E. Douglas & K. D. Fausch, 2004. Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology & Evolution 19(1): 18–24.

    Article  Google Scholar 

  • Paavola, R., T. Muotka, R. Virtanen, J. Heino, D. Jackson & A. Mäki-Petäys, 2006. Spatial scale affects community concordance among fishes, benthic macroinvertebrates, and bryophytes in streams. Ecological Applications 16(1): 368–379.

    Article  PubMed  Google Scholar 

  • Pace, G., N. Bonada & N. Prat, 2013. Long-term effects of climatic–hydrological drivers on macroinvertebrate richness and composition in two Mediterranean streams. Freshwater Biology 58(7): 1313–1328.

    Article  Google Scholar 

  • Paller, M. H., S. C. Sterrett, T. D. Tuberville, D. E. Fletcher & A. M. Grosse, 2014. Effects of disturbance at two spatial scales on macroinvertebrate and fish metrics of stream health. Journal of Freshwater Ecology 29(1): 83–100.

    Article  Google Scholar 

  • Passy, S. I. & F. G. Blanchet, 2007. Algal communities in human-impacted stream ecosystems suffer beta-diversity decline. Diversity and Distributions 13(6): 670–679.

    Article  Google Scholar 

  • Peeters, E. T., R. Gylstra & J. H. Vos, 2004. Benthic macroinvertebrate community structure in relation to food and environmental variables. Hydrobiologia 519(1–3): 103–115.

    Article  Google Scholar 

  • Reice, S. R., 1980. The role of substratum in benthic macroinvertebrate microdistribution and litter decomposition in a woodland stream. Ecology 61: 580–590.

    Article  Google Scholar 

  • Sanders, H. L., 1968. Marine benthic diversity: a comparative study. American naturalist 102: 243–282.

    Article  Google Scholar 

  • Schmera, D. & T. Eros, 2004. Effect of riverbed morphology, stream order and season on the structural and functional attributes of caddisfly assemblages (Insecta: Trichoptera) Annales de Limnologie-International Journal of Limnology. Cambridge Univ Press, 193–200.

  • Shannon, C. E., 2001. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review 5(1): 3–55.

    Article  Google Scholar 

  • Shapiro, S. S. & M. B. Wilk, 1965. An analysis of variance test for normality (complete samples). Biometrika 52: 591–611.

    Article  Google Scholar 

  • Solimini, A. G., A. Benvenuti, R. D’Olimpio, M. De Cicco & G. Carchini, 2001. Size structure of benthic invertebrate assemblages in a Mediterranean river. Journal of the North American Benthological Society 20(3): 421–431.

    Article  Google Scholar 

  • Star Consortium, 2003. The AQEM sampling method to be applied in STAR. Internet-URL: http://www.eu-star.at Link: Protocols.

  • Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2000. Invertébrés d’eau douce: systématique, biologie, écologie. CNRS éditions Paris.

  • Tachet, H., P. Usseglio-Polatera & C. Roux, 1994. Theoretical habitat templets, species traits, and species richness: Trichoptera in the Upper Rhône River and its floodplain. Freshwater Biology 31(3): 397–415.

    Article  Google Scholar 

  • Tomanova, S. & P. Usseglio-Polatera, 2007. Patterns of benthic community traits in neotropical streams: relationship to mesoscale spatial variability. Fundamental and Applied Limnology/Archiv für Hydrobiologie 170(3): 243–255.

    Article  Google Scholar 

  • Traversetti, L. & M. Scalici, 2014. Assessing the influence of source distance and hydroecoregion on the invertebrate assemblage similarity in central Italy streams. Knowledge and Management of Aquatic Ecosystems(414):02.

  • Traversetti, L., A. Manfrin & M. Scalici, 2013. Remapping hydroecoregion boundaries: a proposal for improving the base of the running water monitoring procedures. Journal of Basic & Applied Sciences 9: 533–537.

    Google Scholar 

  • Traversetti, L., M. Scalici, V. Ginepri, A. Manfrin & S. Ceschin, 2014. Concordance between macrophytes and macroinvertebrates in a Mediterranean river of central Apennine region. Journal of Environmental Biology 35: 497–503.

    PubMed  Google Scholar 

  • Usseglio-Polatera, P., 1994. Theoretical habitat templets, species traits, and species richness: aquatic insects in the Upper Rhône River and its floodplain. Freshwater Biology 31(3): 417–437.

    Article  Google Scholar 

  • Usseglio-Polatera, P. & H. Tachet, 1994. Theoretical habitat templets, species traits, and species richness: Plecoptera and Ephemeroptera in the Upper Rhône River and its floodplain. Freshwater Biology 31(3): 357–375.

    Article  Google Scholar 

  • Wasson, J., A. Chandesris, A. G. Bautista, H. Pella & B. Villeneuve, 2006. Combined pressures and geographical context: hydro-ecoregions framework. Cemagref REBECCA project report.

  • Yandell, B. S., 1997. Practical data analysis for designed experiments. CRC Press, Boca Raton.

    Book  Google Scholar 

Download references

Acknowledgments

This study was technically supported by Roma Tre University. A. Manfrin was financially supported by the Department of Science, Roma Tre University, Rome, and Leibniz-Institute for Freshwater Ecology and Inland Fisheries, Berlin. S. Larsen was supported by an individual fellowship from the German Centre for Integrative Biodiversity Research (iDiv). We want also to thank T. Mehner and the participants of the workshop “Scientific Writing” at the Leibnitz-Institute of Freshwater Ecology and Inland Fisheries for helpful discussion on an early stage of the manuscript. We are indebted to Giorgio Pace, for his help during the field sampling. Finally, we want to thank two anonymous referees for their precious suggestions that helped to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Manfrin.

Additional information

Handling editor: Sonja Stendera

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manfrin, A., Traversetti, L., Pilotto, F. et al. Effect of spatial scale on macroinvertebrate assemblages along a Mediterranean river. Hydrobiologia 765, 185–196 (2016). https://doi.org/10.1007/s10750-015-2412-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2412-0

Keywords

Navigation