Skip to main content
Log in

Morphological and genetic characterization of Sardinian trout Salmo cettii Rafinesque, 1810 and their conservation implications

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The morphological and genetic structure of Western Mediterranean trout Salmo cettii inhabiting basins in Sardinia was completed to assist the design of its conservation programmes. Genetic analysis of protein-coding LDH-C1 plus sequencing mitochondrial control region gene and analyses of morphological characters described 253 specimens from seven localities in two basins in Southwest Sardinia. Nuclear and mitochondrial analyses revealed all of the fish were pure-bred native S. cettii, with no introgression from allochthonous S. trutta. The novel 18 mtDNA control region haplotypes were clustered in an ‘insular’ clade, strictly related to the Adriatic haplogroup, and depicted a radial network around two ancestral haplotypes. Completion of discriminant analysis using data on body pigmentation and quantitative morphologic parameters revealed three phenotypic groups within the fish. Each population and phenotype, characterised by high values of nucleotide and haplotype diversity, were not genetically differentiated and not geographically structured according to the two hydrological basins. Geometric morphometric analysis, based on 15 landmarkers, revealed pronounced and highly significant differences in body shape morphology between populations, suggesting S. cettii is locally adapting to extreme environmental conditions and so future management plans for these populations should treat the two basins as distinct morphological units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams, D. C. & E. Otarola-Castillo, 2013. Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4: 393–399.

    Article  Google Scholar 

  • Agrawal, A. A., 2001. Phenotypic plasticity in the interactions and evolution of species. Science 294: 321–326.

    Article  CAS  PubMed  Google Scholar 

  • Bazinet, A. L., D. J. Zwickl & M. P. Cummings, 2014. A gateway for phylogenetic analysis powered by grid computing featuring GARLI 2.0. Systematic Biology 63: 812–818.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernatchez, L., 1995. A role for molecular systematics in defining evolutionarily significant units in fishes. In Nielsen, J. L. (ed.), Evolution and Aquatic Ecosystem: Defining Units in Population Conservation. American Fisheries Society Symposium, Bethesda, MD: 114–132.

    Google Scholar 

  • Bernatchez, L., 2001. The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55: 351–379.

    Article  CAS  PubMed  Google Scholar 

  • Bernatchez, L., R. Guyomard & F. Bonhomme, 1992. DNA sequence variation of the mitochondrial control region among geographically remote European brown trout Salmo trutta populations. Molecular Ecology 1: 161–173.

    Article  CAS  PubMed  Google Scholar 

  • Berrebi, P., 1995. Etude génétique des truites de Corse. Laboratoire Génome et Populations, Université de Montpellier pour Parc Naturel Régional de Corse

  • Bianco, P. G., 1990. Potential role of the palaeohistory of the Mediterranean and Paratethys basins on the early dispersal of Euro-Mediterranean freshwater fishes. Ichthyological Exploration of Freshwaters 2: 167–184.

    Google Scholar 

  • Bianco, P. G., 1995. Mediterranean endemic freshwater fishes of Italy. Biological Conservation 72: 159–170.

    Article  Google Scholar 

  • Caputo, V., M. Giovannotti, P. Nisi Cerioni, M. L. Caniglia & A. Splendiani, 2004. Genetic diversity of brown trout in central Italy. Journal of Fish Biology 65: 403–418.

    Article  Google Scholar 

  • Cau, A. 1997. Valutazione della popolazione della trota sarda Salmo (trutta) macrostigma nelle acque interne della Sardegna ai fini del suo recupero. Relazione tecnica. Regione Autonoma della Sardegna, Assessorato alla Difesa dell’Ambiente, Università degli studi di Cagliari.

  • Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1660.

    Article  CAS  PubMed  Google Scholar 

  • Cortey, M. & J. L. García-Marín, 2002. Evidence for phylogenetically informative sequence variation in the mitochondrial region of the Atlantic brown trout. Journal of Fish Biology 60: 1058–1063.

    Article  CAS  Google Scholar 

  • Cortey, M., C. Pla & J. L. García-Marín, 2004. Historical biogeography of Mediterranean trout. Molecular Phylogenetics and Evolution 33: 831–844.

    Article  PubMed  Google Scholar 

  • Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin (v. 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.

    PubMed Central  CAS  Google Scholar 

  • Ferguson, A., 1989. Genetic differences among brown trout, Salmo trutta, stocks and their importance for the conservation and management of the species. Freshwater Biology 21: 35–46.

    Article  Google Scholar 

  • Fu, Y., 1997. Statistical tests of neutrality of mutations against populations growth, hitchhiking and background selection. Genetics 147: 915–925.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gandolfi, G., P. Torricelli, S. Zerunian & A. Marconato, 1991. I pesci delle acque interne italiane. Unione Zoologica Italiana, Istituto Poligrafico e Zecca dello Stato, Rome.

    Google Scholar 

  • Giuffra, E., R. Guyomard & G. Forneris, 1996. Phylogenetic relationships and introgression patterns between incipient parapatric species of Italian brown trout (Salmo trutta L. complex). Molecular Ecology 5: 207–220.

    Article  Google Scholar 

  • Goudie, A., 1982. The Human Impact. Man’s Role in Environmental Change. Blackwell, Oxford.

    Google Scholar 

  • Gratton, P., G. Allegrucci, A. Gandolfi & V. Sbordoni, 2013. Genetic differentiation and hybridization in two naturally occurring sympatric trout Salmo spp. forms from a small karstic lake. Journal of Fish Biology 82: 637–657.

    Article  CAS  PubMed  Google Scholar 

  • Gratton, P., G. Allegrucci, V. Sbordoni & A. Gandolfi, 2014. The evolutionary jigsaw puzzle of the surviving trout (Salmo trutta L. complex) diversity in the Italian region. A multilocus Bayesian approach. Molecular Phylogenetics and Evolution 79: 292–304.

    Article  PubMed  Google Scholar 

  • Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program from Windows 95/98/NT. Department of Microbiology, North Carolina State University, Raleigh, NC 27695 USA.

  • Hamilton, K. E., A. Ferguson, J. B. Taggart, T. Tomasson, A. Walker & E. Fahy, 1989. Post-glacial colonization of brown trout, Salmo trutta L.: Ldh-5 as a phylogeographic marker locus. Journal of Fish Biology 35: 651–664.

    Article  Google Scholar 

  • Harpending, H., 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology 66: 591–600.

    CAS  PubMed  Google Scholar 

  • Hermida, M., E. S. Miguel, C. Bouza, J. Castro & P. Martinez, 2009. Morphological variation in a secondary contact between divergent lineages of brown trout (Salmo trutta) from the Iberian Peninsula. Genetics and Molecular Biology 32: 42–50.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ho, S. Y. W., B. Shapiro, M. Phillips, A. Cooper & A. J. Drummond, 2007. Evidence for time dependency of molecular rate estimates. Systematic Biology 56: 515–522.

    Article  PubMed  Google Scholar 

  • IUCN Red List (http://www.iucnredlist.org, last checked December 2nd, 2014).

  • Jamandre, B. W., J. D. Durand & W. N. Tzeng, 2014. High sequence variations in mitochondrial DNA control region among worldwide populations of flathead mullet Mugil cephalus. International Journal of Zoology 1: 1–9.

    Article  Google Scholar 

  • Klingenberg, C. P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11: 353–357.

    Article  PubMed  Google Scholar 

  • Kottelat, M. & J. Freyhof, 2007. Handbook of European freshwater fishes. Publications Kottelat, Cornol.

    Google Scholar 

  • Lercetau-Köhler, E., U. Schliewen, T. Kopun & S. Weiss, 2013. Genetic variation in brown trout Salmo trutta across the Danube, Rhine, and Elbe headwaters: a failure of the phlyogeographic paradigm? BMC Evolutionary Biology 13: 176.

    Article  Google Scholar 

  • Mahalanobis, P. C., 1936. On the generalized distance in statistics. Proceedings of the National Institute of Sciences of India 2: 49–55.

    Google Scholar 

  • Massidda, P., 1995. Salmo (trutta) macrostigma in Sardegna. Biologia ambientale 5: 40–43.

    Google Scholar 

  • McMeel, O. M., E. M. Hoey & A. Ferguson, 2001. Partial nucleotide sequences, and routine typing by polymerase chain reaction-restriction fragment length polymorphism, of the brown trout (Salmo trutta) lactate dehydrogenase, LDH-C1*90 and *100 alleles. Molecular Ecology 10: 29–34.

    Article  CAS  PubMed  Google Scholar 

  • Nath, H. B. & R. C. Griffiths, 1993. The coalescent in two colonies with symmetrical migration. Journal of Mathematical Biology 31: 841–851.

    Article  CAS  PubMed  Google Scholar 

  • Nonnis-Marzano, F., N. Corradi, R. Papa, J. Tagliavini & G. Gandolfi, 2003. Molecular evidence for introgression and loss of genetic variability in Salmo (trutta) macrostigma as a result of massive restocking of Apennine populations (Northern and Central Italy). Environmental Biology of Fishes 68: 349–356.

    Article  Google Scholar 

  • Pomini, F. P., 1940. Ricerche sul Salmo macrostigma. Bollettino di pesca, Idrobiologia e Peiscicoltura 16: 3–36.

    Google Scholar 

  • Posada, D. & K. A. Crandall, 1998. ModelTest: testing the model of DNA substitution. Bioinformatics 14: 817–818.

    Article  CAS  PubMed  Google Scholar 

  • Poteaux, C., F. Bonhomme & P. Berrebi, 1999. Microsatellite polymorphism and genetic impact of restocking in Mediterranean brown trout (Salmo trutta L.). Heredity 82: 645–653.

    Article  PubMed  Google Scholar 

  • Querci, G., E. Pecchioli, C. Leonzio, F. Frati & F. Nardi, 2013. Molecular characterization and hybridization in Salmo (trutta) macrostigma morphotypes from Central Italy. Hydrobiologia 702: 191–200.

    Article  CAS  Google Scholar 

  • Rohlf, F. J. & D. E. Slice, 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39: 40–59.

    Article  Google Scholar 

  • Ronquist, F. & J. P. Huelsenbeck, 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  • Sabatini, A., R. Cannas, M. C. Follesa, F. Palmas, A. Manunza, G. Matta, A. A. Pendugiu, P. Serra & A. Cau, 2011. Genetic characterization and artificial reproduction attempt of endemic Sardinian trout Salmo trutta L., 1758 (Osteichthyes, Salmonidae): experiences in captivity. Italian Journal of Zoology 78: 20–26.

    Article  Google Scholar 

  • Slatkin, M., 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47: 264–279.

    Article  Google Scholar 

  • Splendiani, A., M. Giovannotti, P. Nisi Cerioni, M. L. Caniglia & V. Caputo, 2006. Phylogeographic inferences on the native brown trout mtDNA variation in central Italy. The Italian Journal of Zoology 73: 179–189.

    Article  CAS  Google Scholar 

  • Splendiani, A., P. Ruggeri, M. Giovannotti & V. Caputo Barucchi, 2013. Role of environmental factors in the spread of domestic trout in Mediterranean streams. Freshwater Biology 58: 2089–2101.

    Article  Google Scholar 

  • Suarez, J., J. M. Bautista, A. Almodòvar & A. Machordom, 2001. Evolution of the mitochondrial control region in Palaearctic brown trout (Salmo trutta) populations: the biogeographical role of the Iberian Peninsula. Heredity 87: 198–206.

    Article  CAS  PubMed  Google Scholar 

  • Sušnik, S., I. Knizhin, A. Snoj & S. Weiss, 2006. Genetic and morphological characterization of a Lake Ohrid endemic, Salmo (Acantholingua) ohridanus with a comparison to sympatric Salmo trutta. Journal of Fish Biology 68: 2–23.

    Article  Google Scholar 

  • Sušnik, S., A. Snoj, A. F. Wilson, D. Mrdak & S. Weiss, 2007. Historical demography of brown trout (Salmo trutta) in the Adriatic drainage including the putative S. letnica endemic to Lake Ohrid. Molecular Phylogenetics and Evolution 44: 63–76.

    Article  PubMed  Google Scholar 

  • Swofford, D. L., 2002. PAUP 4.0b10a: Phylogenetic Analysis Using Parsimony (and Other Methods). Sinauer, Sunderland, MA.

    Google Scholar 

  • Tajima, F., 1989. The effect of change in population size on DNA polymorphism. Genetics 123: 597–601.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura, K. & M. Nei, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512–526.

    CAS  PubMed  Google Scholar 

  • Tortonese, E., 1970. Osteichthyes, parte I. Fauna d’Italia, Vol. X. Calderini, Bologna.

  • Varian, A. & K. M. Nichols, 2010. Heritability of morphology in brook trout with variable life histories. PLoS ONE 5: e12950.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zwickl, D.J., 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin. https://www.nescent.org/wg_garli/

Download references

Acknowledgments

We sincerely would like to thank Mauro Bardazzi for his kind assistance with fish sampling, Alberto Sanna for his technical support and Flavio Orru for his assistance and local knowledge in the field. We thank the anonymous reviewers for their comments. The field and genetic research was funded by the Provincia di Cagliari (project 4/AMB/2011—Attuazione Piano di gestione SIC “Foresta di Monte Arcosu”—Servizio relativo al recupero del ceppo autoctono della trota sarda Salmo (trutta) macrostigma). The field equipment used for transport and camps belonged to GRAIA srl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Zaccara.

Additional information

Handling editor: Christian Sturmbauer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaccara, S., Trasforini, S., Antognazza, C.M. et al. Morphological and genetic characterization of Sardinian trout Salmo cettii Rafinesque, 1810 and their conservation implications. Hydrobiologia 760, 205–223 (2015). https://doi.org/10.1007/s10750-015-2322-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2322-1

Keywords

Navigation