Skip to main content
Log in

Comparison of different methods used for phosphorus determination in aquatic organisms

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The reliable determination of the total phosphorus (P) content stored in aquatic biota is essential for studies on nutrient stoichiometry, as well as for effective lake management measures. However, a variety of methods are found in the literature for sample P content determination, which renders it necessary to assess whether the data reported in different studies are comparable. We used different combinations of combustion durations, acid types and acid concentrations for sample digestion, and measured P concentrations subsequently with the standard colorimetric method. In addition, P contents of samples were assayed by ICP–OES and MP–AES methods. Our results confirmed that the variability among studies using different methods may explain some of the reported intraspecific and interspecific variation. We found that duration of combustion exerted the most important influence on the P retrieval, while acid type and acidity of the hydrolysing solution did not substantially influence the efficiency of sample digestion. We recommend using 8 h of combustion and 0.3 N HCl for acid hydrolysis prior to the colorimetric P analysis, and urge standardisation in the P analyses of biotic samples so as to obtain reliable results and data comparable among different studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Benstead, J. P., J. M. Hood, N. V. Whelan, M. R. Kendrick, D. Nelson, A. F. Hanninen & L. M. Demi, 2014. Coupling of dietary phosphorus and growth across diverse fish taxa: a meta-analysis of experimental aquaculture studies. Ecology 95: 2768–2777.

    Article  Google Scholar 

  • Boros, G., I. Tátrai & S. A. Nagy, 2009. Using high-pressure Teflon bomb digestion in phosphorus determination of aquatic animals. International Journal of Limnology 45: 55–58.

    Article  Google Scholar 

  • Boros, G., J. Jyväsjärvi, P. Takács, A. Mozsár, I. Tátrai, M. Søndergaard & R. I. Jones, 2012. Between–lake variation in the elemental composition of roach (Rutilus rutilus L.). Aquatic Ecology 46: 385–394.

    Article  Google Scholar 

  • Brönmark, C. & L. A. Hansson, 2005. The Biology of Lakes and Ponds. Oxford University Press, Oxford.

    Google Scholar 

  • Carpenter, S. R., K. L. Cottingham & D. E. Schindler, 1992. Biotic feedbacks in lake phosphorus cycles. Trends in Ecology and Evolution 7: 332–336.

    Article  CAS  PubMed  Google Scholar 

  • Claeson, S. M., J. L. Li, J. E. Compton & P. A. Bisson, 2006. Response of nutrients, biofilm, and benthic insects to salmon carcass addition. Canadian Journal of Fisheries and Aquatic Sciences 63: 1230–1241.

    Article  Google Scholar 

  • Czamanski, M., A. Nugraha, P. Pondaven, M. Lasbleiz, A. Masson, N. Caroff, R. Bellail & P. Tréguer, 2011. Carbon, nitrogen and phosphorus elemental stoichiometry in aquacultured and wild–caught fish and consequences for pelagic nutrient dynamics. Marine Biology 158: 2847–2862.

    Article  CAS  Google Scholar 

  • Dodson, S. I., 2005. Introduction to Limnology. McGraw Hill, New York.

    Google Scholar 

  • El–Sabaawi, R. W., T. J. Kohler, E. Zandoná, J. Travis, M. C. Marshall, S. A. Thomas, D. N. Reznick, M. Walsh, J. F. Gilliam, C. Pringle & A. S. Flecker, 2012. Environmental and organismal predictors of intraspecific variation in the stoichiometry of a neotropical freshwater fish. Plos One 7: 1–12.

    Google Scholar 

  • Fehér, M., E. Baranyai, E. Simon, P. Bársony, I. Szücs, J. Posta & L. Stündl, 2013. The interactive effect of cobalt enrichment in Artemia on the survival and larval growth of barramundi, Lates calcarifer. Aquaculture 414–415: 92–99.

    Article  Google Scholar 

  • Frost, P. C., J. P. Benstead, W. F. Cross, H. Hillebrand, J. H. Larson, M. A. Xenopoulos & T. Yoshida, 2006. Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecology Letters 9: 774–779.

    Article  PubMed  Google Scholar 

  • Griffiths, D., 2006. The direct contribution of fish to lake phosphorus cycles. Ecology of Freshwater Fish 15: 86–95.

    Article  Google Scholar 

  • Hendrixson, H. A., R. W. Sterner & A. D. Kay, 2007. Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. Journal of Fish Biology 70: 121–140.

    Article  Google Scholar 

  • Kufel, L. & I. Kufel, 2002. Chara beds acting as nutrient sinks in shallow lakes – a review. Aquatic Botany 72: 249–260.

    Article  Google Scholar 

  • Pai, S.-C., C.-C. Yang & J. P. Riley, 1990. Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex. Analitica Chimica Acta 229: 115–120.

    Article  CAS  Google Scholar 

  • Parmenter, R. R. & V. A. Lamarra, 1991. Nutrient cycling in a freshwater marsh–the decomposition of fish and waterfowl carrion. Limnology and Oceanography 36: 976–987.

    Article  Google Scholar 

  • Pilati, A. & M. J. Vanni, 2007. Ontogeny, diet shifts, and nutrient stoichiometry in fish. Oikos 116: 1663–1674.

    Article  Google Scholar 

  • Rodushkin, I., T. Ruth & A. Huhtasaari, 1999. Comparison of two digestion methods for elemental determinations in plant material by ICP techniques. Analytica Chimica Acta 378: 191–200.

    Article  CAS  Google Scholar 

  • Rønsholdt, B., 1995. Effect of size/age and feed composition on body composition and phosphorus content of rainbow trout Oncorhynchus mykiss. Water Science and Technology 31: 175–183.

    Article  Google Scholar 

  • Shearer, K. D., 1984. Changes in elemental composition of hatchery-reared rainbow trout, Salmo gairdneri, associated with growth and reproduction. Canadian Journal of Fisheries and Aquatic Sciences 41: 1592–1600.

    Article  CAS  Google Scholar 

  • Sterner, R. W., 2008. On the phosphorus limitation paradigm for lakes. International Review of Hydrobiology 93: 433–445.

    Article  CAS  Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.

    Google Scholar 

  • Sterner, R. W. & N. B. George, 2000. Carbon, nitrogen and phosphorus stoichiometry of cyprinid fishes. Ecology 81: 127–140.

    Article  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Ottawa.

    Google Scholar 

  • Tanner, D. K., E. N. Leonard & J. C. Brazner, 1999. Microwave digestion method for phosphorus determination of fish tissue. Limnology and Oceanography 44: 708–709.

    Article  CAS  Google Scholar 

  • Tanner, D. K., J. C. Brazner & V. J. Brady, 2000. Factors influencing carbon, nitrogen, and phosphorus content of fish from a Lake Superior coastal wetland. Canadian Journal of Fisheries and Aquatic Sciences 57: 1243–1251.

    Article  CAS  Google Scholar 

  • Tarvainen, M., J. Sarvala & H. Helminen, 2002. The role of phosphorus release by roach (Rutilus rutilus L.) in the water quality changes of a biomanipulated lake. Freshwater Biology 47: 2325–2336.

    Article  CAS  Google Scholar 

  • Vrede, T., S. Drakare, P. Eklöv, A. Hein, A. Liess, J. Olsson, J. Persson, M. Quevedo, R. Stabo & R. Svenback, 2011. Ecological stoichiometry of Eurasian perch – intraspecific variation due to size, habitat and diet. Oikos 120: 886–896.

    Article  Google Scholar 

  • Walve, J. & U. Larsson, 1999. Carbon, nitrogen and phosphorus stoichiometry of crustacean zooplankton in the Baltic Sea: implications for nutrient recycling. Journal of Plankton Research 21: 2309–2321.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank M. J. Vanni, S. Palmer, S. Harangi, E. Baranyai, Z. Vital and Z. Poller for help with laboratory work and manuscript preparation. We acknowledge the contribution of Agilent Technologies and the Novo-Lab Ltd. (Hungary) for providing the ICP-OES 720 and the MP-AES 4100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gergely Boros.

Additional information

Handling editor: Judit Padisák

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boros, G., Mozsár, A. Comparison of different methods used for phosphorus determination in aquatic organisms. Hydrobiologia 758, 235–242 (2015). https://doi.org/10.1007/s10750-015-2293-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2293-2

Keywords

Navigation