Skip to main content

Advertisement

Log in

Greenhouse gas emission and storage in a small shallow lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Small lakes are likely to show considerable temporal variability in greenhouse gas emissions given their transient stratification and short residence time. To determine the extent that CO2 and CH4 emission and storage depends on surface meteorology, we studied a shallow lake during 2 years with contrasting rainfall and thermal stratification. Gas fluxes were estimated with wind-based and surface renewal models and compared to direct measurements obtained with floating chambers. The assessment of greenhouse gases storage revealed that the lake gained CO2 in association with rainfall in both the rainier (2011) and drier summer (2012). In 2011, stratification was less extensive and disrupted frequently. The lake was a source of CO2 and CH4, and ebullition exceeded diffusive fluxes of CH4. In 2012, stratification was more persistent, the lake was a sink for CO2 during dry periods, CO2 and CH4 accumulated in the hypolimnion later in the summer when rainfall increased, diffusive fluxes of CH4 were similar to those in 2011 mid-summer and over four times higher during overturn. Ebullition was lower in the drier summer. Fluxes measured with chambers were closer to estimations from the surface renewal model and about two times values estimated with wind-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aberg, J., M. Jansson & A. Jonsson, 2010. Importance of water temperature and thermal stratification dynamics for temporal variation of surface water CO2 in a boreal lake. Journal of Geophysical Research 115: G02024.

    Article  Google Scholar 

  • Banerjee, S. & S. MacIntyre, 2004. The air–water interface: turbulence and scalar exchange. Advances in Ocean and Coastal Engineering 9: 181–237.

    Article  Google Scholar 

  • Bastviken, D., J. Ejlertsson, I. Sundh & L. Tranvik, 2003. Methane as a source of carbon and energy for lake pelagic food webs. Ecology 84: 969–981.

    Article  Google Scholar 

  • Bastviken, D., L. J. Tranvik, J. A. Downing, P. M. Crill & A. Enrich-Prast, 2011. Freshwater methane emissions offset the continental carbon sink. Science 331: 50.

    Article  CAS  PubMed  Google Scholar 

  • Bussmann, I., 2005. Methane release through suspension of littoral sediment. Biogeochemistry 74: 283–302.

    Article  CAS  Google Scholar 

  • Casper, P., S. C. Maberly, G. H. Hall & B. J. Finlay, 2000. Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry 49: 1–19.

    Article  CAS  Google Scholar 

  • Cole, J. J. & N. Caraco, 1998. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnology and Oceanography 43: 647–656.

    Article  CAS  Google Scholar 

  • Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.

    Article  CAS  Google Scholar 

  • Crusius, J. & R. Wanninkhof, 2003. Gas transfer velocities measured at low wind speed over a lake. Limnology and Oceanography 48: 1010–1017.

    Article  Google Scholar 

  • Csanady, G. T., 1990. The role of breaking wavelets in air–sea gas transfer. Journal of Geophysical Research 95: 749–759.

    Article  Google Scholar 

  • DelSontro, T., D. F. McGinnis, S. Sokek, I. Ostrovsky & B. Wehrli, 2010. Extreme methane emissions from a Swiss Hydropower Reservoir: contribution from bubbling sediments. Environmental Science and Technology 44: 2419–2425.

    Article  CAS  PubMed  Google Scholar 

  • Downing, J. A., 2010. Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29: 9–24.

    Google Scholar 

  • Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack & J. J. Middelburg, 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51: 2388–2397.

    Article  Google Scholar 

  • Fechner-Levy, E. & H. F. Hemond, 1996. Trapped methane volume and potential effects on methane ebullition in a northern peatland. Limnology and Oceanography 41: 1375–1383.

    Article  CAS  Google Scholar 

  • Fernández, J., F. Peeters & H. Hofmann, 2014. The importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake. Environmental Science and Technology 48: 7297–7304.

    Article  Google Scholar 

  • Heiskanen, J. J., I. Mammarella, S. Haapanala, J. Pumpanen, T. Vesala, S. MacIntyre & A. Ojala, 2014. Effects of cooling and internal wave motions on gas transfer coefficients in a boreal lake. Tellus B 66: 22827.

    Article  Google Scholar 

  • Hesslein, R. H., J. W. M. Rudd, C. Kelly, P. Ramlal & K. A. Hallard, 1991. Carbon dioxide pressure in surface waters of Canadian lakes. In Wilhelms, S. C. & J. S. Gulliver (eds), Air–Water Mass Transfer: Selected Papers from the Second International Symposium on Gas Transfer at Water Surfaces. American Society of Civil Engineering, New York: 413–431.

    Google Scholar 

  • Hofmann, H., L. Federwisch & F. Peeters, 2010. Wave-induced release of methane: littoral zones as a source of methane in lakes. Limnology and Oceanography 55: 1990–2000.

    Article  CAS  Google Scholar 

  • Huttunen, J. T., J. Alm, A. Liikanen, S. Juutinen, T. Larmola, T. Hammar, J. Silvola & P. J. Martikainen, 2003. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52: 609–621.

    Article  CAS  PubMed  Google Scholar 

  • Huttunen, J. T., T. S. Valsanen, S. K. Hellsten & P. J. Martikainen, 2006. Methane fluxes at the sediment–water interface in some boreal lakes and reservoirs. Boreal Environment Research 11: 27–34.

    CAS  Google Scholar 

  • Imberger, J., 1998. Flux paths in a stratified lake: A review. In J. Imberger (ed), Physical processes in Lakes and Oceans, pp. 1–17. AGU, Washington, DC.

  • International Panel on Climate Change (IPCC), 2007. The physical science basis: summary for policymakers. Fourth Assessment Report. Cambridge University Press.

  • Jahne, B., K. O. Munnich, R. Bosinger, A. Dutz, W. Huber & P. Libner, 1987. On parameters influencing air–water gas exchange. Journal of Geophysical Research 92: 1937–1949.

    Article  Google Scholar 

  • Juutinen, S., M. Rantakari, P. Kortelainen, J. T. Huttunen, T. Larmola, J. Alm, J. Silvola & P. J. Martikainen, 2009. Methane dynamics in different boreal lake types. Biogeosciences 6: 209–223.

    Article  CAS  Google Scholar 

  • Kankaala, P., J. L. Bellido, A. Ojala, T. Tulonen & R. I. Jones, 2013. Lake size and water-column stability affect the importance of methane for pelagic food webs of boreal lakes. Geophysical Research Abstracts 15, EGU2013–2268.

  • Kling, G. W., G. W. Kipphut & M. C. Miller, 1992. The flux of CO2 and CH4 from lakes and rivers in arctic Alaska. Hydrobiologia 240: 23–36.

    Article  CAS  Google Scholar 

  • Kortelainen, P., M. Rantakari, J. Huttunen, T. Mattsson, J. Alm, S. Juutinen, T. Larmola, J. Silvola & P. J. Martikainen, 2006. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biology 12: 1554–1567.

    Article  Google Scholar 

  • Laurion, I., W. F. Vincent, S. MacIntyre, L. Retamal, C. Dupont, P. Francus & R. Pienitz, 2010. Variability in greenhouse gas emissions from permafrost thaw ponds. Limnology and Oceanography 55: 115–133.

    Article  CAS  Google Scholar 

  • MacIntyre, S., 1993. Vertical mixing in a shallow, eutrophic lake: possible consequences for the light climate of phytoplankton. Limnology and Oceanography 38: 798–817.

    Article  Google Scholar 

  • MacIntyre, S., R. Wanninkhof & J. P. Chanton, 1995. Trace gas exchange across the air–water interface in freshwater and coastal marine environments. In Matson, P. A. & R. C. Harris (eds), Methods in Ecology Biogenic Trace Gasses: Measuring Emissions from Soil and Water. Blackwell Science, Oxford: 52–97.

    Google Scholar 

  • MacIntyre, S., K. M. Flynn, R. Jellison & J. R. Romero, 1999. Boundary mixing and nutrient flux in Mono Lake, CA. Limnology and Oceanography 44: 512–529.

    Article  CAS  Google Scholar 

  • MacIntyre, S., J. R. Romero & G. W. Kling, 2002. Spatial–temporal variability in mixed layer deepening and lateral advection in an embayment of Lake Victoria, East Africa. Limnology and Oceanography 47: 656–671.

    Article  Google Scholar 

  • MacIntyre, S., J. P. Fram, P. J. Kushner, N. D. Bettez, W. J. O’Brien, J. E. Hobbie & G. W. Kling, 2009. Climate-related variations in mixing dynamics in an Alaskan arctic lake. Limnology and Oceanography 54: 2401–2417.

    Article  Google Scholar 

  • MacIntyre, S., A. Jonsson, M. Jansson, J. Aberg, D. E. Turney & S. D. Miller, 2010. Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophysical Research Letters 37: L24604.

    Article  Google Scholar 

  • MacIntyre, S., J. R. Romero, G. M. Silsbe & B. M. Emery, 2014. Stratification and horizontal exchanges in Lake Victoria, East Africa. Limnology and Oceanography 59: 1805–1838.

    Article  Google Scholar 

  • Martinez, D. & M. A. Anderson, 2013. Methane production and ebullition in a shallow, artificially aerated eutrophic temperate lake (Lake Elsinore, CA). Science of the Total Environment 454: 457–465.

    Article  PubMed  Google Scholar 

  • Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura & H. Zhang, 2013. Anthropogenic and natural radiative forcing. In Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley (eds), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Natchimuthu, S., B. Panneer Selvam & D. Bastviken, 2014. Influence of weather variables on methane and carbon dioxide flux from a shallow pond. Biogeochemistry 119: 403–413.

    Article  CAS  Google Scholar 

  • Ojala, A., J. L. Bellido, T. Tulonen, P. Kankaala & J. Huotari, 2011. Carbon gas fluxes from a brown-water and a clear water lake in the boreal zone during a summer with extreme rain events. Limnology and Oceanography 56: 61–76.

    Article  CAS  Google Scholar 

  • Ostrovsky, I., D. F. McGinnis, L. Lapidus & W. Eckert, 2008. Quantifying gas ebullition with echosounder: the role of methane transport by bubbles in a medium-sized lake. Limnology and Oceanography Methods 6: 18.

    Article  Google Scholar 

  • Raymond, P. A., J. Hartmann, R. Lauerwald, S. Sobek, C. McDonald, M. Hoover, D. Butman, R. Striegl, E. Mayorga, C. Humborg, et al., 2013. Global carbon dioxide emissions from inland waters. Nature 503: 355–359.

    Article  CAS  PubMed  Google Scholar 

  • Repo, M. E., J. T. Huttunen, A. V. Naumov, A. V. Chichulin, E. D. Lapshina, W. Bleuten & P. J. Martikainen, 2007. Release of CO2 and CH4 from small wetland lakes in western Siberia. Tellus B 59: 788–796.

    Article  Google Scholar 

  • Roulet, N. T., P. M. Crill, N. T. Comer, A. Dove & R. A. Bourbonniere, 1997. CO2 and CH4 flux between a boreal beaver pond and the atmosphere. Journal of Geophysical Research 102: 29313–29319.

    Article  CAS  Google Scholar 

  • Rudd, J. W. & R. D. Hamilton, 1975. Factors controlling rates of methane oxidation and the distribution of the methane oxidizers in a small stratified lake. Archiv fur Hydrobiologie 75: 522–538.

    CAS  Google Scholar 

  • Rudd, J. W. M. & R. D. Hamilton, 1978. Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. Limnology and Oceanography 23: 337–348.

    Article  CAS  Google Scholar 

  • Rypdal, K. & W. Winiwarter, 2001. Uncertainties in greenhouse gas emission inventories: evaluation, comparability, and implications. Environmental Science and Policy 4: 107–116.

    Article  CAS  Google Scholar 

  • Sanseverino, A. M., D. Bastviken, I. Sundh, J. Pickova & A. Enrich-Prast, 2012. Methane carbon supports aquatic food webs to the fish level. PLoS ONE 7: e42723.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schubert, C. J., T. Diem & W. Eugster, 2012. Methane emissions from a small wind shielded lake determined by eddy covariance, flux chambers, anchored funnels and boundary model calculations: a comparison. Environmental Science & Technology 46: 4515–4522.

    Article  CAS  Google Scholar 

  • Shakhova, N., I. Semiletov, I. Leifer, V. Sergienko, A. Salyuk, D. Kosmach & Ö. Gustafsson, 2014. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience 7: 64–70.

    Article  CAS  Google Scholar 

  • Smith, S. D., 1988. Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. Journal of Geophysical Research 93: 15467–15472.

    Article  Google Scholar 

  • Soja, G., B. Kitzler & A. M. Soja, 2014. Emissions of greenhouse gases from Lake Neusiedl, a shallow steppe lake in Eastern Austria. Hydrobiologia 731: 125–138.

    Article  CAS  Google Scholar 

  • Tedford, E. W., S. MacIntyre, S. D. Miller & M. J. Czikowsky, 2014. Similarity scaling of turbulence in a temperate lake during fall cooling. Journal of Geophysical Research. doi:10.1002/2014JC010135.

    Google Scholar 

  • Tokida, T., M. Mizoguchi, T. Miyazaki, A. Kagemoto, O. Nagata & R. Hatano, 2007. Episodic release of methane bubbles from peatland during spring thaw. Chemosphere 70: 165–171.

    Article  CAS  PubMed  Google Scholar 

  • Vesala, T., J. Huotari, U. Rannik, T. Suni, S. Smolander, A. Sogachev, S. Launiainen & A. Ojala, 2006. Eddy covariance measurements of carbon exchange and latent and sensible heat fluxes over a boreal lake for a full open-water period. Journal of Geophysical Research 111: D11101. doi:10.1029/2005JD006365.

    Article  Google Scholar 

  • Wand, U., V. A. Samarkin, H. M. Nitzsche & H. W. Hubberten, 2006. Biogeochemistry of methane in the permanently ice-covered Lake Untersee, central Dronning Maud Land, East Antarctica. Limnology and Oceanography 51: 1180–1194.

    Article  CAS  Google Scholar 

  • Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97: 7373–7382.

  • Weyhenmeyer, C. E., 1999. Methane emissions from beaver ponds: rates, patterns, and transport mechanisms. Global Biogeochemical Cycles 13: 1079–1090.

    Article  CAS  Google Scholar 

  • Whiticar, M. J., E. Faber & M. Schoell, 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotopic evidence. Geochimica et Cosmochimica Acta 50: 693–709.

    Article  CAS  Google Scholar 

  • Wik, M., P. M. Crill, R. K. Varner & D. Bastviken, 2013. Multiyear measurements of ebullitive methane flux from three subarctic lakes. Journal of Geophysical Research 118: 1307–1321.

    Google Scholar 

  • Wik, M., B. F. Thornton, D. Bastviken, S. MacIntyre, R. K. Varner & P. M. Crill, 2014. Energy input is primary controller of methane bubbling in subarctic lakes. Geophysical Research Letters 41: 555–560.

    Article  CAS  Google Scholar 

  • Wilhelm, S. & R. Adrian, 2008. Impact of summer warming on the thermal characteristics of a polymictic lake: consequences for oxygen, nutrients and phytoplankton. Freshwater Biology 53: 226–237.

    Article  CAS  Google Scholar 

  • Wintermans, J. F. G. M. & A. De Mots, 1965. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta 109: 448–453. (Biochimica et Biophysica Acta (BBA)-biophysics including photosynthesis).

    Article  CAS  PubMed  Google Scholar 

  • Zappa, C. J., W. R. McGillis, P. A. Raymond, J. B. Edson, E. J. Hintsa, H. J. Zemmelink, J. W. H. Dacey & D. T. Ho, 2007. Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophysical Research Letters 34: L10601.

    Article  Google Scholar 

  • Zeikus, J. G. & M. R. Winfrey, 1976. Temperature limitations of methanogenesis in aquatic sediments. Applied and Environmental Microbiology 31: 99–107.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to V. Sauter, X. Egler, P. Michaud, A. Przytulska, K. Hudelson and K. Negandhi for their help in the field, E. W. Tedford and A. T. Crowe for their help with computations, and to two anonymous Reviewers and J. Melack who made constructive comments on earlier drafts. The study was supported by a NSERC Discovery Grant to IL, U.S. National Science Foundation Grants DEB 0919603 and ARC 1204267 to SM, and a GRIL supporting scholarship to MB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bartosiewicz.

Additional information

Handling editor: David Philip Hamilton

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartosiewicz, M., Laurion, I. & MacIntyre, S. Greenhouse gas emission and storage in a small shallow lake. Hydrobiologia 757, 101–115 (2015). https://doi.org/10.1007/s10750-015-2240-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2240-2

Keywords

Navigation