Skip to main content
Log in

Ecology of the invasive New Zealand mud snail, Potamopyrgus antipodarum (Hydrobiidae), in a mediterranean-climate stream system

  • INVASIVE SPECIES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The New Zealand mud snail, Potamopyrgus antipodarum, is a widely distributed non-native species of management concern on four continents. In a southern California stream, P. antipodarum abundance, which ranged from ca. <10 to nearly 150,000 snails m−2, was related to discharge and temperature patterns. Laboratory experiments indicated that P. antipodarum (1) survivorship decreased from 13 to 27°C, but its growth rate was higher at 13 and 20°C than 27°C; (2) grazing rates were similar to those of native algivores in short-term trials; (3) grazing impact was greater than that of a native hydrobiid snail in longer-term trials; (4) ingested different diatom sizes than some other grazers; (5) reduced the abundances of medium-sized and large diatoms, and several filamentous cyanobacteria and chlorophytes, while increasing the relative abundances of tough filamentous chlorophytes (e.g., Cladophora); (6) impact on other grazing invertebrates was species specific, ranging from competition to facilitation; (7) reduced the survivorship of Anaxyrus boreas tadpoles; and (8) was consumed by non-native Procambarus clarkii and naiads of Aeshna and Argia. Ecological effects of introduced P.antipodarum are subtle, occurring primarily at transitory high densities, but flow regulation may enhance their effects by eliminating high flows that reduce their population sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aberle, N., H. Hillebrand, J. Grey & K. H. Wiltshire, 2005. Selectivity and competitive interactions between two benthic invertebrate grazers (Asellus aquaticus and Potamopyrgus antipodarum): an experimental study using 13C- and 15 N-labelled diatoms. Freshwater Biology 50: 369–379.

    Article  Google Scholar 

  • Alonso, A. & P. Castro-Diez, 2008. What explains the invading success of the aquatic mud snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca)? Hydrobiologia 614: 107–116.

    Article  Google Scholar 

  • Alonso, A. & P. Castro-Diez, 2012. Tolerance to air exposure of the New Zealand mudsnail Potamopyrgus antipodarum (Hydrobiidae, Mollusca) as a prerequisite to survival in overland translocations. NeoBiota 14: 67–74.

    Article  Google Scholar 

  • ANS, 2007. National management and control plan for the New Zealand mudsnail (Potamopyrgus antipodarum). U.S. Federal Aquatic Nuisance Species Task Force. www.anstaskforce.gov/Documents/NZMS_MgmtControl_Final.pdf.

  • Arango, C. P., L. A. Riley, J. L. Tank & R. O. Hall, 2009. Herbivory by an invasive snail increases nitrogen fixation in a nitrogen-limited stream. Canadian Journal of Fisheries and Aquatic Science 66: 1309–1317.

    Article  CAS  Google Scholar 

  • Baltz, D. M. & P. B. Moyle, 1993. Invasion resistance to introduced species by a native assemblage of California stream fishes. Ecological Applications 3: 246–255.

    Article  Google Scholar 

  • Bell, M., 1978. Fishes of the Santa Clara River system, Southern California. Natural History Museum of Los Angeles County. Contributions in Science 295: 1–20.

    Google Scholar 

  • Benson, A. J., 2011. New Zealand mudsnail sightings distribution. U.S. Geological Survey, Nonindigenous Aquatic Species Program. http://nas.er.usgs.gov/taxgroup/mollusks/newzealandmudsnaildistribution.aspx.

  • Bersine, K., V. E. F. Brenneis, R. C. Draheim, A. M. W. Rub, J. E. Zamon, R. K. Litton, S. A. Hinton, M. D. Sytsma, J. R. Cordell & J. W. Chapman, 2008. Distribution of the invasive New Zealand mudsnail (Potamopyrgus antipodarum) in the Columbia River Estuary and its first recorded occurrence in the diet of juvenile Chinook salmon (Oncorhynchus tshawytscha). Biological Invasions 10: 1381–1388.

    Article  Google Scholar 

  • Bonada, N. & V. H. Resh, 2013. Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems. Hydrobiologia 719: 1–29.

  • Bowler, P., 1991. The rapid spread of the freshwater hydrobiid snail Potamopyrgus antipodarum (Gray) in the middle Snake River, southern Idaho. Proceedings of the Desert Fish Council 21: 173–182.

    Google Scholar 

  • Broekhuizen, N., S. Parkyn & D. Miller, 2001. Fine sediment effects on feeding and growth in the invertebrate grazers Potamopyrgus antipodarum (Gastropoda, Hydrobiidae) and Deleatidium sp. (Ephemeroptera, Leptophlebiidae). Hydrobiologia 457: 125–132.

    Article  Google Scholar 

  • Broekhuizen, N., S. Parkyn, D. Miller & R. Rose, 2002. The relationship between food density and short term assimilation rates in Potamopyrgus antipodarum and Deleatidium sp. Hydrobiologia 477: 181–188.

    Article  Google Scholar 

  • Brenneis, V. E. F., A. Sih & C. E. de Rivera, 2010. Coexistence in the intertidal: interactions between the nonindigenous New Zealand mud snail Potamopyrgus antipodarum and the native estuarine isopod Gnorimosphaeroma insulare. Oikos 119: 1755–1764.

    Article  Google Scholar 

  • Brenneis, V. E. F., A. Sih & C. E. de Rivera, 2011. Integration of an invasive consumer into an estuarine food web: direct and indirect effects of the New Zealand mud snail. Oecologia 167: 169–179.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown, K. M., B. Lang & K. E. Perez, 2008. The conservation ecology of North American pleurocerid and hydrobiid gastropods. Journal of the North American Benthological Society 27: 484–495.

    Article  Google Scholar 

  • Cada, C., 2004. Interactions between the invasive New Zealand mudsnail, Potamopyrgus antipodarum, mayflies, and fish predators. MS thesis. Montana State University, Bozeman.

  • California Department of Fish and Game, 2005. Controlling the spread of New Zealand mud snails on wading gear. Office of Spill Prevention and Response Administrative Report 2005–02.

  • Cejka, T., L. Dvorak & V. Kosel, 2008. Present distribution of Potamopyrgus antipodarum (Gray, 1843) (Mollusca: Gastropoda) in the Slovak Republic. Malacologica Bohemoslovaca 7: 21–25.

    Google Scholar 

  • Cope, N. J. & M. J. Winterbourn, 2004. Competitive interactions between two successful molluscan invaders of freshwaters: an experimental study. Aquatic Ecology 38: 83–91.

    Article  Google Scholar 

  • Cox, T. J. & J. C. Rutherford, 2000. Thermal tolerances of two stream invertebrates exposed to diurnally varying temperature. New Zealand Journal of Marine and Freshwater Research 34: 203–208.

    Article  Google Scholar 

  • Cross, W. F. & A. C. Benke, 2002. Intra- and interspecific competition among coexisting lotic snails. Oikos 96: 251–264.

    Article  Google Scholar 

  • Davis, A. & K. Moeltner, 2010. Valuing the prevention of an infestation: the threat of the New Zealand mud snail in northern Nevada. Agricultural and Resource Economics Review 39: 56–74.

    Google Scholar 

  • Davidson, A. M., M. Jennisons & A. B. Nicotra, 2011. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? Ecology Letters 14: 419–431.

    Article  PubMed  Google Scholar 

  • Dorgelo, J., 1987. Density fluctuations in populations (1982–1986) and biological observations of Potamopyrgus jenkinsi in two trophically differing lakes. Hydrobiological Bulletin 21: 95–110.

    Article  Google Scholar 

  • Dorgelo, J. and P. E. G. Leonards. 2001. Relationship between C/N ratio of food types and growth rate in the snail Potamopyrgus jenkinsi (E. A. Smith). Journal of the North American Benthological Society 20: 60–67.

  • Dudley, W. C., P. L. Blackwelder, L. E. Brand & J. C. Duplessy, 1986a. Stable isotope composition of coccoliths. Marine Micropaleontology 10: 1–8.

    Article  Google Scholar 

  • Dudley, T. L., S. D. Cooper & N. Hemphill, 1986b. Effects of macroalgae on a stream invertebrate community. Journal of the North American Benthological Society 5: 93–106.

    Article  Google Scholar 

  • Dudley, T. L., C. M. D’Antonio & S. D. Cooper, 1990. Mechanisms and consequences of interspecific competition between competing stream insects. Journal of Animal Ecology 59: 849–866.

    Article  Google Scholar 

  • Dudley, T. L., 1992. Beneficial effects of grazing insects on stream algae: consumption vs. epiphyte cleaning. Oikos 65: 121–127.

    Article  Google Scholar 

  • Dudley, T. & B. Collins, 1995. Biological invasions in California wetlands: the impacts and control of non-indigenous species in natural areas. Pacific Institute for Studies in Development, Environment and Society, Oakland.

    Google Scholar 

  • Dukes, J. S. & H. A. Mooney, 1999. Does global change increase the success of biological invaders? Trends in Ecology & Evolution 4: 135–139.

    Article  Google Scholar 

  • Dussart, B. H., 1965. Les different categories de plancton. Hydrobiologia 26: 72–74.

    Article  Google Scholar 

  • Dybdahl, M. F. & S. L. Kane, 2005. Adaptation versus phenotypic plasticity in the success of a clonal invader. Ecology 86: 1592–1601.

    Article  Google Scholar 

  • Dybdahl, M.F., A. Emblidge & D. Drown, 2005. Studies of a trematode parasite for the biological control of an invasive freshwater snail. Report to the Idaho Power Company.

  • Dzialowski, E. M., 2007. Introduction to the symposium on developmental transitions in respiratory physiology. Comparative Biochemistry and Physiology A 148A: 709–711.

    Article  CAS  Google Scholar 

  • Evans, M.A., 2012. Impacts of the invasive New Zealand mudsnail (Potamopyrgus antipodarum) as leaf litter decomposers. Dissertation, University of California, Davis, Publication 3544722, 111 p.

  • Feminella, J. W., M. E. Power & V. H. Resh, 1989. Periphyton responses to invertebrate grazing and riparian canopy in three northern California coastal streams. Freshwater Biology 22: 445–457.

    Article  Google Scholar 

  • Gasith, A. & V. Resh, 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.

    Article  Google Scholar 

  • Gerard, C., A. Blanc & K. Costil, 2003. Potamopyrgus antipodarum (Mollusca: Hydrobiidae) in continental aquatic gastropod communities: impact of salinity and trematode parasitism. Hydrobiologia 493: 167–172.

    Article  Google Scholar 

  • Hall, R. O., J. L. Tank & M. F. Dybdahl, 2003. Exotic snails dominate nitrogen and carbon cycling in a highly productive stream. Frontiers in Ecology and the Environment 1: 408–411.

    Article  Google Scholar 

  • Hall, R. O., M. F. Dybdahl & M. C. Vanderloop, 2006. Extremely high secondary production of introduced snails in rivers. Ecological Applications 16: 1121–1131.

    Article  PubMed  Google Scholar 

  • Haynes, A., B. J. R. Taylor & M. I. E. Videy, 1985. The influence of the mobility of Potamopyrgus jenkinsi (Prosobranchia: Hydrobiidae) on its spread. Archiv fur Hydrobiologie 103: 497–508.

    Google Scholar 

  • Hechinger, R. F., 2011. Efficacy & safety of potential biological control agent of the New Zealand mudsnail. In: 6th National New Zealand Mudsnail Conference, University of Idaho, Moscow, March 15–16.

  • Hechinger, R. F., 2012. Faunal survey and identification key for the trematodes (Platyhelminthes: Digenea) infecting Potamopyrgus antipodarum (Gastropoda: Hydrobiidae) as first intermediate host. Zootaxa 3418: 1–27.

    Google Scholar 

  • Herbst, D. B., M. T. Bogan & R. Lusardi, 2008. Low specific conductivity limits growth and survival of the New Zealand mud snail from the upper Owens River, California. Western North American Naturalist 68: 324–333.

    Article  Google Scholar 

  • Hillebrand, H., C. D. Dürselem, D. B. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 3: 403–424.

    Article  Google Scholar 

  • Holomuzki, J. R. & B. J. F. Biggs, 1999. Distributional responses to flow disturbance by a stream-dwelling snail. Oikos 87: 36–47.

    Article  Google Scholar 

  • Holomuzki, J. R. & B. J. F. Biggs, 2006. Food limitation affects algivory and grazer performance for New Zealand stream macroinvertebrates. Hydrobiologia 561: 83–94.

    Article  Google Scholar 

  • Holomuzki, J. R. & N. Hemphill, 1996. Snail–tadpole interactions in streamside pools. American Midland Naturalist 136: 315–327.

    Article  Google Scholar 

  • James, M. R., I. Hawes & M. Weatherhead, 2000. Removal of settled sediments and periphyton from macrophytes by grazing invertebrates in the littoral zone of a large oligotrophic lake. Freshwater Biology 44: 311–326.

    Article  Google Scholar 

  • Jokela, J. & C. M. Lively, 1995. Parasites, sex, and early reproduction in a mixed population of freshwater snails. Evolution 49: 1268–1271.

    Article  Google Scholar 

  • Kerans, B. L., M. E. Dybdahl, M. M. Gangloff & L. E. Jannot, 2005. Potamopyrgus antipodarum: distribution, density, and effects on native macroinvertebrate assemblages in the Greater Yellowstone ecosystem. Journal of the North American Benthological Society 24: 123–138.

    Article  Google Scholar 

  • Kerans, B. L., C. A. Cada & J. Zickovich, 2010. Asymmetrical behavioral interactions between the New Zealand mud snail, Potamopyrgus antipodarum, and scraping, collector-gathering and collector-filtering macroinvertebrates. Journal of Freshwater Ecology 25: 657–666.

    Article  Google Scholar 

  • Kociolek, J. P. & E. F. Stoermer, 1993. Freshwater gomphonemoid diatom phylogeny: preliminary results. Hydrobiologia 269(270): 31–38.

    Article  Google Scholar 

  • Kolar, C. S. & D. M. Lodge, 2001. Progress in invasion biology: predicting invaders. Trends in Ecology and Evolution 16: 199–204.

    Article  PubMed  Google Scholar 

  • Kolosovich, A. S., S. Chandra, L. Saito, C. J. Davis & L. Atwell, 2012. Short-term survival and potential grazing effects of the New Zealand mudsnail in an uninvaded Western Great Basin watershed. Aquatic Invasions 7: 203–209.

    Article  Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986. Süßwasserflora von Mitteleuropa. Band 2. Bacillariophyceae. Teil 1. Naviculaceae. Gustav Fisher Verlag, Stutttgart. Germany.

  • Krammer, K. and H. Lange-Bertalot, 1988. Süßwasserflora von Mitteleuropa. Band 2. Bacillariophyceae. Teil 2. Bacillariaceae, Epithemiaceae, Surirellaceae. Gustav Fisher Verlag, Stutttgart. Germany.

  • Krammer, K. & H. Lange-Bertalot, 1991a. Süßwasserflora von Mitteleuropa. Band 2. Bacillariophyceae. Teil 3. Centrales, Fragilariaceae, Eunotiaceae. Gustav Fisher Verlag, Stutttgart. Germany.

  • Krammer, K. & H. Lange-Bertalot, 1991b. Süßwasserflora von Mitteleuropa. Band 2. Bacillariophyceae. Teil 4. Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) and Gomphonema. Gustav Fisher Verlag, Stutttgart. Germany.

  • Krist, A. C. & C. C. Charles, 2012. The invasive New Zealand mudsnail, Potamopyrgus antipodarum, is an effective grazer of algae and altered the assemblage of diatoms more than native grazers. Hydrobiologia 694: 143–151.

    Article  CAS  Google Scholar 

  • Levri, E. P., R. M. Dermott, S. J. Lunnen, A. A. Kelly & T. Ladson, 2008. The distribution of the invasive New Zealand mud snail (Potamopyrgus antipodarm) in Lake Ontario. Aquatic Ecosystem Health and Management 11: 412–421.

    Article  Google Scholar 

  • Li, J. L., S. L. Johnson & J. B. Sobota, 2011. Three responses to small changes in stream temperature by autumn-emerging aquatic insects. Journal of the North American Benthological Society 30: 474–484.

    Article  CAS  Google Scholar 

  • Liess, A. & M. Kahlert, 2009. Gastropod grazers affect periphyton nutrient stoichiometry by changing benthic algal taxonomy and through differential nutrient uptake. Journal of the North American Benthological Society 28: 283–293.

    Article  Google Scholar 

  • Liess, A. & K. Lange, 2011. The snail Potamopyrgus antipodarum grows faster and is more active in the shade, independent of food quality. Oecologia 167: 85–96.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, P. V. & R. J. Stevenson, 1989. Effects of snail grazing on benthic algal community structure in different nutrient environments. Journal of the North American Benthological Society 8: 162–172.

    Article  Google Scholar 

  • Meekins, J. F. & B. C. McCarthy, 2001. Effect of environmental variation on the invasive success of a nonindigenous forest herb. Ecological Applications 11: 1336–1347.

    Article  Google Scholar 

  • Meffe, G. K., 1984. Effects of abiotic disturbance on coexistence of predator-prey fish species. Ecology 65: 1525–1534.

    Article  Google Scholar 

  • Montserrat, M., S. Magalhães, M. W. Sabelis, A. M. de Roos & A. Janssen, 2012. Invasion success in communities with reciprocal intraguild predation depends on the stage structure of the resident population. Oikos 121: 67–76.

    Article  Google Scholar 

  • Moffitt, C. M. & C. A. James, 2012. Dynamics of Potamopyrgus antipodarum infestations and seasonal water temperatures in a heavily used recreational watershed in intermountain North America. Aquatic Invasions 7: 192–202.

    Article  Google Scholar 

  • Moore, J. W., D. B. Herbst, W. N. Heady & S. M. Carlson, 2012. Stream community and ecosystem responses to the boom and bust of an invading snail. Biological Invasions 14: 2435–2446.

    Article  Google Scholar 

  • Murria, C., N. Bonada & N. Prat, 2008. Effects of the invasive species Potamopyrgus antipodarum (Hydrobiidae, Mollusca) on community structure in a small Mediterranean stream. Fundamental and Applied Limnology 171: 131–143.

    Article  CAS  Google Scholar 

  • Nebeker, A. V., 1971. Effect of temperature at different altitudes on the emergence of aquatic insects from a single stream. Journal of the Kansas Entomological Society 44: 26–35.

    Google Scholar 

  • Patrick, R. & C.W. Reimer, 1966. The diatoms of the United States, exclusive of Alaska and Hawaii: Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. The Academy of Natural Sciences of Philadelphia, Monograph No 13, Lititz, Pennsylvania, USA: 688 pp.

  • Poff, N., 1996. A hydrogeography of unregulated streams in the United States and an examination of scale-dependence in some hydrological descriptors. Freshwater Biology 36: 71–79.

    Article  Google Scholar 

  • Ponder, W. F., 1988. New Zealand Mud Snail, a Molluscan colonizer of Europe and Australia. Journal of Molluscan Studies 54: 271–286.

    Article  Google Scholar 

  • Potapova, M. & P. B. Hamilton, 2007. Morphological and ecological variation within the Achnanthidium minutissimum (Bacillariophyceae) species complex. Journal of Phycology 43: 561–575.

    Article  Google Scholar 

  • Ribeiro, F., B. Elvira, M. J. Collares-Pereira & P. B. Moyle, 2008. Life-history traits of non-native fishes in Iberian watersheds across several invasion stages: a first approach. Biological Invasions 10: 89–102.

    Article  Google Scholar 

  • Ricciardi, A. & H. J. MacIsaac, 2011. Impacts of biological invasions on freshwater ecosystems. In Richardson, D. M. (ed.), Fifty Years of Invasion Ecology: The Legacy of Charles Elton. Wiley-Blackwell, West Sussex: 211–224.

    Google Scholar 

  • Richards, D., 2004. Competition between the threatened Bliss Rapids snail, Taylorconcha serpenticola (Hershler et al.) and the invasive, aquatic snail, Potamopyrgus antipodarum (Gray). PhD thesis, Montana State University, Bozeman, Montana, USA.

  • Richards, D. C., 2002. The New Zealand mudsnail invades the western United States. Aquatic Nuisance Species Digest (Gray Freshwater Center, Navarre, MN) 4(4): 42–44.

    Google Scholar 

  • Richards, D. C., L. D. Cazier & G. T. Lester, 2001. Spatial distribution of three snail species, including the invader Potamopyrgus antipodarum, in a freshwater spring. Western North American Naturalist 61: 375–380.

    Google Scholar 

  • Richards, D. C., P. O’Connell & D. C. Shinn, 2004. Simple control method to limit the spread of the New Zealand mudsnail Potamopyrgus antipodarum. North American Journal of Fisheries Management 24: 114–117.

    Article  Google Scholar 

  • Riley, L., 2002. Interactions between invasive and endemic freshwater snails. In: Potamopyrgus antipodarum in the Western USA: Conference 2002, Minutes of the Second Annual Conference on the New Zealand Mudsnail in the Western USA (August 27 and 28, 2002), Montana State University, Bozeman.

  • Riley, L. A., M. F. Dybdahl & R. O. Hall, 2008. Invasive species impact: asymmetric interactions between invasive and endemic freshwater snails. Journal of the North American Benthological Society 27: 509–520.

    Article  Google Scholar 

  • Sakai, A. K., F. W. Allendorf, J. S. Holt, D. M. Lodge, J. Molofsky, K. A. With, S. Baughman, R. J. Cabin, J. E. Cohen, N. C. Ellstrand, D. E. McCauley, P. O’Neil, I. M. Parker, J. N. Thompson & S. G. Weller, 2001. The population biology of invasive species. Annual Review of Ecology and Systematics 32: 305–332.

    Article  Google Scholar 

  • Smith, G. R., A. A. Burgett & J. E. Rettig, 2012. Effects of the anuran tadpole assemblage and nutrient enrichment on freshwater snail abundance (Physella sp.). American Midland Naturalist 168: 341–351.

    Article  Google Scholar 

  • Schmidlin, S., D. Schmera & B. Baur, 2012. Alien molluscs affect the composition and diversity of native macroinvertebrates in a sandy flat of Lake Neuchâtel, Switzerland. Hydrobiologia 679: 233–249.

    Article  Google Scholar 

  • Schreiber, E. S. G., A. Glaister, G. P. Quinn & P. S. Lake, 1998. Life history and population dynamics of the exotic New Zealand mudsnail (Prosobranchia: Hydrobiidae) in Lake Purrumbete, Victoria, Australia. Australian Journal of Marine and Freshwater Research 49: 73–78.

    Article  Google Scholar 

  • Schreiber, E. S. G., P. S. Lake & G. P. Quinn, 2002. Facilitation of native stream fauna by an invading species? Experimental investigation of the interaction of the snail, Potamopyrgus antipodarum (Hydrobiidae) with native benthic fauna. Biological Invasions 4: 317–325.

    Article  Google Scholar 

  • Schreiber, E. S. G., G. P. Quinn & P. S. Lake, 2003. Distribution of an alien aquatic snail in relation to flow variability, human activities and water quality. Freshwater Biology 48: 951–961.

    Article  Google Scholar 

  • Simberloff, D. & L. Gibbons, 2004. Now you see them, now you don’t! Population crashes of established introduced species. Biological Invasions 6: 161–172.

    Article  Google Scholar 

  • Sepulveda, A. J. & L. B. Marczak, 2011. Active dispersal of an aquatic invader determined by resource and flow conditions. Biological Invasions 14: 1201–1209.

    Article  Google Scholar 

  • Strayer, D. L. & H. M. Malcolm, 2006. Long-term demography of a zebra mussel (Dreissena polymorpha) population. Freshwater Biology 51: 117–130.

    Article  Google Scholar 

  • Suren, A. M., 2005. Effects of deposited sediment on patch selection by two grazing stream invertebrates. Hydrobiologia 549: 205–218.

    Article  Google Scholar 

  • Sweet, S. S. & B. K. Sullivan, 2005. Bufo californicus. In Lannoo, M. J. (ed.), Amphibian Declines: The Conservation Status of U.S. Species. University of California Press, Berkeley: 396–400.

  • Swift, C. C., T. R. Haglund, M. Ruiz & R. N. Fisher, 1993. The status and distribution of the freshwater fishes of southern California. Bulletin of the Southern California Academy of Sciences 92: 101–167.

    Google Scholar 

  • Twardochleb, L. A., M. Novak & J. S. Moore, 2012. Using the functional response of a consumer to predict biotic resistance to invasive prey. Ecological Applications 22: 1162–1171.

    Article  PubMed  Google Scholar 

  • Vila-Gispert, A., C. Alcaraz & E. García-Berthou, 2005. Life-history traits of invasive fish in small Mediterranean streams. Biological Invasions 7: 107–116.

    Article  Google Scholar 

  • Vilà, M., J. L. Espinar, M. Hejda, P. E. Hulme, V. Jarošík, J. L. Maron, J. Pergl, U. Schaffner, Y. Sun & P. Pyšek, 2011. Ecological impacts of invasive alien plants: a meta analysis of their effects on species, communities and ecosystems. Ecology Letters 14: 702–708.

  • Vinson, M. R. & M. A. Baker, 2008. Poor growth of rainbow trout fed New Zealand mudsnails Potamopyrgus antipodarum. North American Journal of Fisheries Management 28: 701–709.

    Article  Google Scholar 

  • Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger & D. Tilman, 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7: 737–750.

    Google Scholar 

  • Warton, D. I. & K. C. Hui, 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92: 3–10.

    Article  PubMed  Google Scholar 

  • Winterbourn, M., 1970. Population studies on the New Zealand freshwater gastropod, Potamopyrgus antipodarum (Gray). Proceedings of the Malacological Society of London 39: 139–149.

    Google Scholar 

  • Welch, E. B., E. L. Anderson, J. M. Jacoby, B. J. F. Biggs & J. M. Quinn, 2000. Invertebrate grazing of filamentous green algae in outdoor channels. Verhandlungen der Internationale Vereinigung für theoretische und angewandte Limnologie 27: 2408–2414.

    Google Scholar 

  • Zaranko, D. T., D. G. Farara & F. G. Thompson, 1997. Another exotic mollusk in the Laurentian Great Lakes: the New Zealand native Potamopyrgus antipodarum (Gray 1843) (Gastropoda, Hydrobiidae). Canadian Journal of Fisheries and Aquatic Sciences 54: 809–814.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Sean Anderson (California State University – Channel Islands), Sabrina Drill (University of California Cooperative Extension) and Curt Lively (University of Indiana, Bloomington) for advice, support, and cooperation during these studies. We gratefully acknowledge the assistance of numerous students at the RIVRlab who assisted in both lab and field adventures: Mara Evans, Alan Wood, Niko Hartline, Kristen Hewett, Vivian Hurtado, Heather Martin (CSUCI), Devyn Orr, Faris Shalan, Cassidy Anton, Beau Tindall, Kellyn Dott, Ryan Hazelton, Samira Spantman, Mariah H. Edmonds, Jordan Senia, and Devin Barry. We also thank Janice Jones from the Marine Sciences Institute for technical assistance in chlorophyll analyses. We extend a special thank you to Sheila Wiseman for creating all the figures that appear in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danuta M. Bennett.

Additional information

Guest editors: Sidinei M. Thomaz, Katya E. Kovalenko, John E. Havel & Lee B. Kats / Aquatic Invasive Species

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Supplementary material 2 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, D.M., Dudley, T.L., Cooper, S.D. et al. Ecology of the invasive New Zealand mud snail, Potamopyrgus antipodarum (Hydrobiidae), in a mediterranean-climate stream system. Hydrobiologia 746, 375–399 (2015). https://doi.org/10.1007/s10750-014-2136-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2136-6

Keywords

Navigation