Skip to main content
Log in

Should phylogenetic and functional diversity metrics compose macroinvertebrate multimetric indices for stream biomonitoring?

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The idea behind multimetric indices is to integrate information from several metrics to provide a general classification of water bodies without losing the particularities of each individual metric. Historically, multimetric indices use information on richness, taxon sensitivity, and taxonomic diversity. Recently, functional and phylogenetic diversity proved to capture different dimensions of biodiversity. Here we asked if these new metrics provide complementary information to classical metrics and should be included in multimetric indices. We used an index construction protocol based on statistical filters to test candidate metrics for range, sensitivity, and redundancy. We used macroinvertebrate data from streams located in a Savanna region of Brazil, encompassing a gradient of impact, to test our ideas. Of 41 candidate metrics, functional dispersion of functional diversity, mean nearest neighbor distance of phylogenetic diversity, and four classical metrics passed the filter selection composing the final multimetric index. Our results indicated that functional and phylogenetic diversity metrics indeed responded to environmental impact and complemented the information provided by classical metrics. We suggest that future indices should consider including new metrics of functional and phylogenetic diversity to properly monitor multiple dimensions of biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, M. J., K. E. Ellingsen & B. H. Mcardle, 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9: 683–693.

    Article  PubMed  Google Scholar 

  • Barbour, M. T., J. Gerritsen, G. E. Griffith, R. Frydenbourg, E. Mccarron, J. S. White & M. L. Bastian, 1996. A framework for biological criteria for Florida streams using benthic macroinvertebrates. Journal of the North American Benthological Society 15: 185–211.

    Article  Google Scholar 

  • Bonada, N., N. Prat, V. H. Resh & B. Statzner, 2006. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annual Review of Entomology 51: 495–523.

    Article  CAS  PubMed  Google Scholar 

  • Buck, J., 1962. Some physical aspects of insect respiration. Annual Review of Entomology 7: 27–56.

    Article  Google Scholar 

  • Cianciaruso, M. V., I. A. Silva & M. A. Batalha, 2009. Diversidades filogenética e funcional: novas abordagens para a Ecologia de comunidades. Biota Neotropica 9: 93–103.

    Article  Google Scholar 

  • Colzani, E., T. Siqueira, M. T. Suriano & F. O. Roque, 2013. Responses of aquatic insect functional diversity to landscape changes in atlantic forest. Biotropica 45: 343–350.

    Article  Google Scholar 

  • Couceiro, S. R. M., N. Hamada, B. R. Forsberg, T. P. Pimentel & S. L. B. Luz, 2012. A macroinvertebrate multimetric index to evaluate the biological condition of streams in the Central Amazon region of Brazil. Ecological Indicators 18: 118–125.

    Article  Google Scholar 

  • Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.

    Article  Google Scholar 

  • Cummins, K. W., R. W. Merritt & P. Andrade, 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in southeast Brazil. Studies on Neotropical Fauna and Environment 40: 69–89.

    Article  Google Scholar 

  • Dolédec, S. & B. Statzner, 2010. Responses of freshwater biota to human disturbances: contribution of J-NABS to developments in ecological integrity assessments. Journal of the North American Benthological Society 29: 286–311.

    Article  Google Scholar 

  • Dolédec, S., B. Statzner & M. Bournard, 1999. Species traits for future biomonitoring across ecoregions: patterns along a human impacted river. Freshwater Biology 42: 737–758.

    Article  Google Scholar 

  • Dolédec, S., N. Phillips, M. Scarsbrook, R. H. Riley & C. R. Townsend, 2006. Comparison of structural and functional approaches to determining landuse effects on grassland stream invertebrate communities. Journal of the North American Benthological Society 25: 44–60.

    Article  Google Scholar 

  • Durigan, G., M. F. D. Siqueira, G. Antonio & D. Correa, 2007. Threats to the cerrado remnants of the State of São Paulo, Brazil. Scientia Agricola 64: 355–363.

    Article  Google Scholar 

  • Ellison, G. N. & N. J. Gotelli, 2004. A Primer of Ecological Statistics. Sinauer, Massachusetts.

    Google Scholar 

  • Faith, D. P., 1992. Systematics and conservation: on predicting the feature diversity of subsets of taxa. Cladistics 8: 361–373.

    Article  Google Scholar 

  • Feio, M. J. & S. Dolédec, 2012. Integration of invertebrate traits into predictive models for indirect assessment of stream functional integrity: a case study in Portugal. Ecological Indicators 15: 236–247.

    Article  CAS  Google Scholar 

  • Ferreira, W. R., L. T. Paiva & M. Callisto, 2011. Development of a benthic multimetric index for biomonitoring of a neotropical watershed. Brazilian Journal of Biology 71: 15–25.

    Article  CAS  Google Scholar 

  • Harvey, P. H. & M. D. Pagel, 1991. The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford.

    Google Scholar 

  • Hering, D., C. K. Feld, O. Moog & T. Ofenböck, 2006. Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 566: 311–324.

    Article  Google Scholar 

  • Junqueira, V. M. & S. C. M. Campos, 1998. Adaptation of the BMWP method for water quality evaluation to Rio Das Velhas watershed (Minas Gerais Brazil). Acta Limnologica Brasiliensia 10: 125–135.

    Google Scholar 

  • Kembel, S. W., P. D. Cowan, M. R. Helmus, W. K. Cornwell, H. Morlon, D. D. Ackerly, S. P. Blomberg & C. O. Webb, 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463–1464.

    Article  CAS  PubMed  Google Scholar 

  • Kerans, B. L. & J. R. Karr, 1994. A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley. Ecological Applications 4: 768–785.

    Article  Google Scholar 

  • Klemm, D. J., K. Blocksom, F. Fulk, A. T. Herlihy, R. M. Hughes, P. R. Kaufmann, D. V. Peck, J. L. Stoddard, W. T. Thoeny, M. B. Griffith & W. S. Davis, 2003. Development and evaluation of a macroinvertebrate biotic integrity index (MBII) for regionally assessing Mid-Atlantic Highlands streams. Environmental Management 31: 656–669.

    Article  PubMed  Google Scholar 

  • Laliberté, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.

    Article  PubMed  Google Scholar 

  • Laliberté, E., B. Shipley, & M. E. Laliberté, 2010. Package ‘FD’. Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology.

  • Loyola, R. G. N., 2000. Atual estágio do IAP no uso de índices biológicos de qualidade. ACIESP, São Paulo.

    Google Scholar 

  • Maddison, W. P. & D. R. Maddison, 2011. Mesquite: a modular system for evolutionary analysis. Version 2: 75.

    Google Scholar 

  • Magurran, A. E., 2004. Measuring Biological Diversity. Blackwell Publishing, Oxford.

    Google Scholar 

  • Mayfield, M. M. & J. M. Levine, 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13: 1085–1093.

    Article  PubMed  Google Scholar 

  • Melo, S., C. Stenert, M. S. Dalzochio & L. Maltchik, 2014. Development of a multimetric index based on aquatic macroinvertebrate communities to assess water quality of rice fields in southern Brazil. Hydrobiologia 7: 1–14.

    Google Scholar 

  • Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. Fonseca & J. Kent, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, R. B. S., C. M. Castro & D. F. Baptista, 2008. Desenvolvimento de índices multimetricos para utilização em programas de monitoramento biológico da integridade de ecossistemas aquáticos. Oecologia Brasiliensis 12: 487–505.

    Google Scholar 

  • Oliveira, R., D. F. Baptista, R. Mugnai, C. M. Castro & R. M. Hughes, 2011. Towards rapid bioassessment of wadeable streams in Brazil: development of the Guapiacu-Macau Multimetric Index (GMMI) based on benthic macroinvertebrates. Ecological Indicators 11: 1584–1593.

    Article  Google Scholar 

  • Petchey, O. L. & K. J. Gaston, 2002. Functional diversity (FD), species richness and community composition. Ecology Letters 5: 402–411.

    Article  Google Scholar 

  • Petersen, R. C., 1992. The RCE: a riparian, channel, and environmental inventory for small streams in the agricultural landscape. Freshwater Biology 27: 295–306.

    Article  Google Scholar 

  • Podani, J. & D. Schmera, 2006. On dendrogram based measures of functional diversity. Oikos 115: 179–185.

    Article  Google Scholar 

  • Poff, N. L., J. D. Olden, N. K. Vieira, D. S. Finn, M. P. Simmons & B. C. Kondratieff, 2006. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society 25: 730–755.

    Article  Google Scholar 

  • Sanderson, M. J., A. Purvis & C. Henze, 1998. Phylogenetic supertrees: assembling the trees of life. Trends in Ecology and Evolution 13: 105–109.

    Article  CAS  PubMed  Google Scholar 

  • Silva, J. M. C. & J. M. Bates, 2002. Biogeographic patterns and conservation in the South American Cerrado: a Tropical Savanna Hotspot. BioScience 52: 225–233.

    Article  Google Scholar 

  • Statzner, B. & L. A. Beche, 2010. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology 55: 80–119.

    Article  Google Scholar 

  • Stoddard, J. L., D. P. Larsen, C. P. Hawkins, R. K. Johnson & R. H. Norris, 2006. Setting expectations for the ecological condition of streams: the concept for reference condition. Ecological Applications 16: 1267–1276.

    Article  PubMed  Google Scholar 

  • Suriano, M. T., A. A. Fonseca-Gessner, F. O. Roque & C. G. Froehlich, 2011. Choice of macroinvertebrate metrics to evaluate stream conditions in Atlantic Forest, Brazil. Environmental Monitoring and Assessment 175: 87–101.

    Article  PubMed  Google Scholar 

  • Swenson, N. G., 2014. Functional and Phylogenetic Ecology in R. Springer, New York.

    Book  Google Scholar 

  • Tetratech, 2000. A Stream Condition Index for West Virginia Wadeable Streams. U.S. EPA Region 3 Environmental Services Division and Office of Water. Wheeling, Washington.

  • Tilman, D., 2001. Functional diversity. Encyclopedia of Biodiversity 3: 109–120.

    Article  Google Scholar 

  • Tomanova, S., E. Goitia & J. Helešic, 2006. Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia 556: 251–264.

    Article  Google Scholar 

  • Townsend, C. R. & A. G. Hildrew, 1994. Species traits in relation to a habitat templet for river systems. Freshwater Biology 31: 265–275.

    Article  Google Scholar 

  • Vamosi, J. C. & S. M. Vamosi, 2007. Body size, rarity, and phylogenetic community structure: insights from diving beetle assemblages of Alberta. Diversity and Distributions 13: 1–10.

    Google Scholar 

  • Vandewalle, M., F. de Bello, M. P. Berg, T. Bolger, S. Dolédec, F. Dubs, C. K. Feld, R. Harrington, P. A. Harrison, S. Lavorel, M. Da Silva, M. Moretti, J. Niemela, P. Santos, T. Sattler, J. P. Sousa, M. T. Sykes, A. J. Vanbergen & B. A. Woodcock, 2010. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodiversity and Conservation 19: 2921–2947.

    Article  Google Scholar 

  • Vellend, M., W. K. Cornwell, K. Magnuson-Ford & A. Ø. Mooers, 2011. Measuring phylogenetic biodiversity. In Magurran, A. E. & B. J. McGill (eds), Biological Diversity: Frontiers in Measurement and Assessment. Oxford University Press, Oxford: 194–207.

    Google Scholar 

  • Violle, C., M. L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier, 2007. Let the concept of trait be functional! Oikos 116: 882–892.

    Article  Google Scholar 

  • Ward, J. V., 1992. Aquatic Insect Ecology. Wiley, New York.

    Google Scholar 

  • Warwick, R. M. & K. R. Clarke, 1995. New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology 129: 301–305.

    Article  Google Scholar 

  • Webb, C. O., 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. American Naturalist 156: 145–155.

    Article  PubMed  Google Scholar 

  • Webb, C. O., D. D. Ackerly & S. W. Kembel, 2008. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24: 2098–2100.

    Article  CAS  PubMed  Google Scholar 

  • Weiher, E., 2011. A primer of trait and functional diversity. In Magurran, A. E. & B. J. McGill (eds), Biological Diversity: Frontiers in Measurement and Assessment. Oxford University Press, Oxford: 175–193.

    Google Scholar 

Download references

Acknowledgments

We thank Fabio T. T. Hanashiro for comments on an earlier version of this manuscript, Francisco Valente-Neto, Marcia C. P. Bueno and Luiz A. Joaquim for helping in the field, and Susana Trivinho-Strixino and Melissa O. Segura for helping in the identification of Chironomidae and Coleoptera, respectively. This study was partially funded by grant #2013/50424-1, #2011/15077-3 and #2013/20540-0, São Paulo Research Foundation (FAPESP) and by grant #480933/2012-0, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Conflict of interest

All authors declare no conflict of interest in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor S. Saito.

Additional information

Handling editor: Nuria Bonada

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, V.S., Siqueira, T. & Fonseca-Gessner, A.A. Should phylogenetic and functional diversity metrics compose macroinvertebrate multimetric indices for stream biomonitoring?. Hydrobiologia 745, 167–179 (2015). https://doi.org/10.1007/s10750-014-2102-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2102-3

Keywords

Navigation