Skip to main content

Advertisement

Log in

Cardiac rehabilitation utilization, barriers, and outcomes among patients with heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Exercise-based cardiac rehabilitation (CR) is effective for improving both primary (i.e., mortality and hospitalizations) and secondary (i.e., functional capacity and quality of life among) clinical outcomes among patients with heart failure (HF). The mechanisms that explain these benefits are complex and are linked to exercise adaptations such as central and peripheral hemodynamics combined with improved overall medical management. Despite the benefits of CR, utilization rates are low among CR eligible patients. Clinician-, patient-, and health system-related barriers have been identified as primary factors contributing to the lack of CR utilization among HF patients. These include patient referrals (clinician-related), psychosocial factors (patient-related), and patient access to CR services (health system-related). The aims of this review are to detail the components of each barrier as well as identify evidence-based strategies to improve CR utilization and adherence among HF. The improvements in primary and secondary outcomes along with the mechanisms that are linked to these changes will also be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Commodore-Mensah Y (2022) Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation 145:e153-e639. https://doi.org/10.1161/CIR.0000000000001052

  2. Senni M, Tribouilloy CM, Rodeheffer RJ, Jacobsen SJ, Evans JM, Bailey KR, Redfield MM (1999) Congestive heart failure in the community: trends in incidence and survival in a 10-year period. Arch Intern Med 159:29–34

  3. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Evers LR (2022) 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 79:e263-e421

  4. Taylor RS, Walker S, Smart NA, Piepoli MF, Warren FC, Ciani O, Coats A (2019) Impact of exercise rehabilitation on exercise capacity and quality-of-life in heart failure: individual participant meta-analysis. J Am Coll Cardiol 73:1430–1443

  5. O’Connor CM, Whellan DJ, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ, Piña IL (2009) Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. Jama 301:1439–50. https://doi.org/10.1001/jama.2009.454

  6. Keteyian SJ, Michaels A (2022) Heart failure in cardiac rehabilitation: a review and practical considerations. J Cardiopulm Rehabil Prev 2022(42):296–303

    Article  Google Scholar 

  7. Davies EJ, Moxham T, Rees K, Singh S, Coats AJ, Ebrahim S, Taylor RS (2010) Exercise training for systolic heart failure: Cochrane systematic review and meta-analysis. Eur J Heart Fail 12:706–15. https://doi.org/10.1093/eurjhf/hfq056

  8. Ades PA, Keteyian SJ, Balady GJ, Houston-Miller N, Kitzman DW, Mancini DM, Rich MW (2013) Cardiac rehabilitation exercise and self-care for chronic heart failure. JACC Heart Fail 2013(1):540–547. https://doi.org/10.1016/j.jchf.2013.09.002

    Article  Google Scholar 

  9. Keteyian SJ, Leifer ES, Houston-Miller N, Kraus WE, Brawner CA, O'Connor CM, Piña IL (2012) Relation between volume of exercise and clinical outcomes in patients with heart failure. J Am Coll Cardiol 60:1899–905. https://doi.org/10.1016/j.jacc.2012.08.958

  10. Keteyian SJ, Jackson SL, Chang A, Brawner CA, Wall HK, Forman DE, Sperling LS (2022) Tracking cardiac rehabilitation utilization in medicare beneficiaries: 2017 update. J Cardiopulm Rehabil Prev

  11. Chindhy S, Taub PR, Lavie CJ, Shen J (2020) Current challenges in cardiac rehabilitation: strategies to overcome social factors and attendance barriers. Expert Rev Cardiovasc Ther 18:777–789

  12. Chun K-H, Kang S-M (2021) Cardiac rehabilitation in heart failure. Int J Heart Failure 2021(3):1–14

    Article  Google Scholar 

  13. Aurigemma GP, Zile MR, Gaasch WH (2006) Contractile behavior of the left ventricle in diastolic heart failure: with emphasis on regional systolic function. Circulation 2006(113):296–304

    Article  Google Scholar 

  14. Borlaug BA (2014) (2014) The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 11:507–515

    Article  CAS  PubMed  Google Scholar 

  15. Griffin BP, Rimmerman CM, Topol EJ (2006) The cleveland clinic cardiology board review. 2006: Lippincott Williams & Wilkins

  16. Rahamim E, Nachman D, Yagel O, Yarkoni M, Elbaz-Greener G, Amir O, Asleh R (2021) Contemporary pillars of heart failure with reduced ejection fraction medical therapy. J Clin Med 2021(10):4409

    Article  Google Scholar 

  17. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Chioncel O (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 42:3599–3726

  18. Solomon SD, McMurray JJ, Anand IS, Ge J, Lam CS, Maggioni AP, Pieske B (2019) Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 381:1609–1620

  19. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, Fleg JL (2014) Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 370:1383–1392

  20. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, Chuquiure-Valenzuela E (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 385:1451–1461

  21. Ding R, Smith JR, Medina-Inojosa JR, Zhang S, Supervia M, Fischer KM, Zhang W (2021) Cardiac rehabilitation referral and participation rates for heart failure with reduced ejection fraction. J Cardiopulm Rehabil Prev 41:126–127

  22. Afsin Oktay A, Shah SJ (2015) Diagnosis and management of heart failure with preserved ejection fraction: 10 key lessons. Curr Cardiol Rev 11:42–52

  23. Savarese G, Stolfo D, Sinagra G, Lund LH (2022) Heart failure with mid-range or mildly reduced ejection fraction. Nat Rev Cardiol 2022(19):100–116

    Article  Google Scholar 

  24. Ritchey MD, Maresh S, McNeely J, Shaffer T, Jackson SL, Keteyian SJ, Stolp H (2020) Tracking cardiac rehabilitation participation and completion among medicare beneficiaries to inform the efforts of a national initiative. Circ: Cardiovasc Qual Outcomes 13:e005902

  25. Turk-Adawi K, Supervia M, Lopez-Jimenez F, Pesah E, Ding R, Britto RR, Babu AS (2019) Cardiac rehabilitation availability and density around the globe. EClin Med 13:31–45

  26. Dunlay SM, Witt BJ, Allison TG, Hayes SN, Weston SA, Koepsell E, Roger VL (2009) Barriers to participation in cardiac rehabilitation. Am Heart J 158:852–859

  27. Ghisi GL, Polyzotis P, Oh P, Pakosh M, Grace SL (2013) Physician factors affecting cardiac rehabilitation referral and patient enrollment: a systematic review. Clin Cardiol 36:323–335

  28. Golwala H, Pandey A, Ju C, Butler J, Yancy C, Bhatt DL, Fonarow GC (2015) Temporal trends and factors associated with cardiac rehabilitation referral among patients hospitalized with heart failure: findings from get with the guidelines-heart failure registry. J Am Coll Cardiol 66:917–26. https://doi.org/10.1016/j.jacc.2015.06.1089

  29. Adusumalli S, Jolly E, Chokshi NP, Gitelman Y, Rareshide CAL, Kolansky DM, Patel MS (2021) Referral rates for cardiac rehabilitation among eligible inpatients after implementation of a default opt-out decision pathway in the electronic medical record. JAMA Netw Open 4:e2033472. https://doi.org/10.1001/jamanetworkopen.2020.33472

  30. Forman DE, Sanderson BK, Josephson RA, Raikhelkar J, Bittner V, A.C.o.C.s.P.o.C.D. Section, (2015) Heart failure as a newly approved diagnosis for cardiac rehabilitation: challenges and opportunities. J Am Coll Cardiol 2015(65):2652–2659

    Article  Google Scholar 

  31. Grace SL, Russell KL, Reid RD, Oh P, Anand S, Rush J, Stewart DE (2011) Effect of cardiac rehabilitation referral strategies on utilization rates: a prospective, controlled study. Arch Intern Med 171:235–41. https://doi.org/10.1001/archinternmed.2010.501

  32. Casey E, Hughes JW, Waechter D, Josephson R, Rosneck J (2008) Depression predicts failure to complete phase-II cardiac rehabilitation. J Behavioral Med 31:421–431

  33. Grace SL, Abbey SE, Shnek ZM, Irvine J, Franche R-L, Stewart DE (2002) Cardiac rehabilitation I: review of psychosocial factors. Gen Hosp Psychiatry 24:121–126

  34. Yohannes AM, Yalfani A, Doherty P, Bundy C (2007) Predictors of drop-out from an outpatient cardiac rehabilitation programme. Clin Rehabil 2007(21):222–229

    Article  Google Scholar 

  35. Sullivan M, Levy WC, Russo JE, Spertus JA (2004) Depression and health status in patients with advanced heart failure: a prospective study in tertiary care. J Card Fail 10:390–396

  36. Easton K, Coventry P, Lovell K, Carter L-A, Deaton C (2016) Prevalence and measurement of anxiety in samples of patients with heart failure: meta-analysis. J Cardiovasc Nurs 31:367

  37. Granata N, Torlaschi V, Zanatta F, Giardini A, Maestri R, Pavesi C, Sarzi Braga S (2022) Positive affect as a predictor of non-pharmacological adherence in older Chronic Heart Failure (CHF) patients undergoing cardiac rehabilitation. Psychol Health Med 1–15

  38. Collins KA, Reeves GR, Miller NH, Whellan DJ, O’Connor CM, Marcus BH, Kraus WE (2022) Clinical predictors of adherence to exercise training among individuals with heart failure: the HF-action study. J Cardiopulm Rehabil Prev 10.1097

  39. Rengo JL, Savage PD, Barrett T, Ades PA (2018) Cardiac rehabilitation participation rates and outcomes for patients with heart failure. J Cardiopulm Rehabil Prev 38:38–42

  40. Field PE, Franklin RC, Barker RN, Ring I, Leggat PA (2018) Cardiac rehabilitation services for people in rural and remote areas: an integrative literature review. Rural Rem Health 18:178-190

  41. Borg S, Öberg B, Leosdottir M, Lindolm D, Nilsson L, Bäck M (2019) Factors associated with non-attendance at exercise-based cardiac rehabilitation. BMC Sports Sci Med Rehabil 2019(11):1–10

    Google Scholar 

  42. Shanmugasegaram S, Oh P, Reid RD, McCumber T, Grace SL (2013) Cardiac rehabilitation barriers by rurality and socioeconomic status: a cross-sectional study. Int J Equity Health 12:1–8

  43. Farah M, Abdallah M, Szalai H, Berry R, Lagu T, Lindenauer PK, Pack QR (2019) Association between patient cost sharing and cardiac rehabilitation adherence. Mayo Clin Proc 2019(94):2390–2398. https://doi.org/10.1016/j.mayocp.2019.07.018

    Article  CAS  Google Scholar 

  44. Elsakr C, Bulger, DA, Roman S, Kirolos I, Khouzam RN (2019) Barriers physicians face when referring patients to cardiac rehabilitation: a narrative review. Ann Transl Med 7:414. https://doi.org/10.21037/atm.2019.07.61

  45. Pandey A, Keshvani N, Zhong L, Mentz RJ, Piña IL, DeVore AD, Fonarow GC (2021) Temporal trends and factors associated with cardiac rehabilitation participation among medicare beneficiaries with heart failure. Heart Fail 9:471–481

  46. Rubin R (2019) Although cardiac rehab saves lives, few eligible patients take part. JAMA 322:386–388

  47. Strömberg A (2005) The crucial role of patient education in heart failure. Euro J Heart Fail 7:363–369

  48. Kit Chan DS, Cheung HW (2003) The effects of education on anxiety among Chinese patients with heart disease undergoing cardiac catheterization in Hong Kong. Contemp Nurse 15:310–320

  49. Taylor GH, Wilson SL, Sharp J (2011) Medical, psychological, and sociodemographic factors associated with adherence to cardiac rehabilitation programs: a systematic review. J Cardiovasc Nurs 2011(26):202–209

    Article  Google Scholar 

  50. Pack QR, Mansour M, Barboza JS, Hibner BA, Mahan MG, Ehrman JK, Keteyian SJ (2013) An early appointment to outpatient cardiac rehabilitation at hospital discharge improves attendance at orientation: a randomized, single-blind, controlled trial. Circulation 127:349–355

  51. Dolansky MA, Zullo MD, Hassanein S, Schaefer JT, Murray P, Boxer R (2012) Cardiac rehabilitation in skilled nursing facilities: a missed opportunity. Heart Lung 2012(41):115–124

    Article  Google Scholar 

  52. Keteyian SJ, Ades PA, Beatty AL, Gavic-Ott A, Hines S, Lui K, Sperling LS (2022) A review of the design and implementation of a hybrid cardiac rehabilitation program: an expanding opportunity for optimizing cardiovascular care. J Cardiopulm Rehabil Prev 42:1–9

  53. Imran HM, Baig M, Erqou S, Taveira TH, Shah NR, Morrison A, Wu WC (2019) Home‐based cardiac rehabilitation alone and hybrid with center‐based cardiac rehabilitation in heart failure: a systematic review and meta‐analysis. J Am Heart Assoc 8:e012779

  54. Taylor RS, Sadler S, Dalal HM, Warren FC, Jolly K, Davis RC, Wingham J (2019) The cost effectiveness of REACH-HF and home-based cardiac rehabilitation compared with the usual medical care for heart failure with reduced ejection fraction: a decision model-based analysis. Euro J Prev Cardiol 26:1252–1261

  55. Dunlay SM, Roger VL, Redfield MM (2017) Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 2017(14):591–602

    Article  Google Scholar 

  56. Mentz RJ, Whellan DJ, Reeves GR, Pastva AM, Duncan P, Upadhya B, Kitzman DW (2021) Rehabilitation intervention in older patients with acute heart failure with preserved versus reduced ejection fraction. JACC Heart Fail 9:747–757. https://doi.org/10.1016/j.jchf.2021.05.007

  57. Kitzman DW, Whellan DJ, Duncan P, Pastva AM, Mentz RJ, Reeves GR, O’Connor CM (2021) Physical rehabilitation for older patients hospitalized for heart failure. N Engl J Med 385:203–216. https://doi.org/10.1056/NEJMoa2026141

  58. Kitzman DW, Brubaker PH, Herrington DM, Morgan TM, Stewart KP, Hundley WG, Haykowsky MJ (2013) Effect of endurance exercise training on endothelial function and arterial stiffness in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. J Am Coll Cardiol 62:584–92. https://doi.org/10.1016/j.jacc.2013.04.033

  59. Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, Nicklas BJ (2016) Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. Jama 315:36–46. https://doi.org/10.1001/jama.2015.17346

  60. Babu AS, Lopez-Jimenez F, Thomas RJ, Isaranuwatchai W, Herdy AH, Hoch JS, Grace SL (2016) Advocacy for outpatient cardiac rehabilitation globally. BMC Health Serv Res 2016(16):471. https://doi.org/10.1186/s12913-016-1658-1

    Article  Google Scholar 

  61. Taylor RS, Long L, Mordi IR, Madsen MT, Davies EJ, Dalal H, Zwisler A-D (2019) Exercise-based rehabilitation for heart failure: Cochrane systematic review, meta-analysis, and trial sequential analysis. JACC: Heart Fail 7:691–705

  62. Swank AM, Horton J, Fleg JL, Fonarow GC, Keteyian S, Goldberg L, Kraus WE (2012) Modest increase in peak VO2 is related to better clinical outcomes in chronic heart failure patients: results from heart failure and a controlled trial to investigate outcomes of exercise training. Circ Heart Fail 5:579–85. https://doi.org/10.1161/circheartfailure.111.965186

  63. Keteyian SJ, Kerrigan DJ, Lewis B, Ehrman JK, Brawner CA (2018) Exercise training workloads in cardiac rehabilitation are associated with clinical outcomes in patients with heart failure. Am Heart J 204:76–82

  64. Smart N, Marwick TH (2004) Exercise training for patients with heart failure: a systematic review of factors that improve mortality and morbidity. Am J Med 2004(116):693–706. https://doi.org/10.1016/j.amjmed.2003.11.033

    Article  Google Scholar 

  65. Forman DE, Arena R, Boxer R, Dolansky MA, Eng JJ, Fleg JL, Shen WK (2017) Prioritizing functional capacity as a principal end point for therapies oriented to older adults with cardiovascular disease: a scientific statement for healthcare professionals from the American Heart Association. Circulation 135:e894-e918. https://doi.org/10.1161/cir.0000000000000483

  66. Fan Y, Gu X, Zhang H (2019) Prognostic value of six-minute walk distance in patients with heart failure: a meta-analysis. Eur J Prev Cardiol 2019(26):664–667. https://doi.org/10.1177/2047487318797400

    Article  Google Scholar 

  67. Giannitsi S, Bougiakli M, Bechlioulis A, Kotsia A, Michalis LK, Naka KK (2019) 6-minute walking test: a useful tool in the management of heart failure patients. Ther Adv Cardiovasc Dis 2019(13):1753944719870084. https://doi.org/10.1177/1753944719870084

    Article  Google Scholar 

  68. Ciani O, Piepoli M, Smart N, Uddin J, Walker S, Warren FC, Taylor RS (2018) Validation of exercise capacity as a surrogate endpoint in exercise-based rehabilitation for heart failure. JACC: Heart Fail 6:596–604. https://doi.org/10.1016/j.jchf.2018.03.017

  69. Yamamoto S, Yamaga T, Nishie K, Sakai Y, Ishida T, Oka K, Horiuchi H (2020) Impact of physical performance on prognosis among patients with heart failure: systematic review and meta-analysis. J Cardiol 76:139–146. https://doi.org/10.1016/j.jjcc.2020.02.022

  70. Pokharel Y, Khariton Y, Tang Y, Nassif ME, Chan PS, Arnold SV, Spertus JA (2017) Association of serial Kansas City Cardiomyopathy Questionnaire assessments with death and hospitalization in patients with heart failure with preserved and reduced ejection fraction: a secondary analysis of 2 randomized clinical trials. JAMA Cardiol 2:1315–1321. https://doi.org/10.1001/jamacardio.2017.3983

  71. Reddy YN, Rikhi A, Obokata M, Shah SJ, Lewis GD, AbouEzzedine OF, Stevenson LW (2020) Quality of life in heart failure with preserved ejection fraction: importance of obesity, functional capacity, and physical inactivity. Euro J Heart Fail 22:1009–1018

  72. Slimani, M., R. Ramirez-Campillo, A. Paravlic, L.D. Hayes, N.L. Bragazzi, and M. Sellami (2018) The effects of physical training on quality of life, aerobic capacity, and cardiac function in older patients with heart failure: a meta-analysis. Front Physiol 9:1564

  73. Silavanich V, Nathisuwan S, Phrommintikul A, Permsuwan U (2019) Relationship of medication adherence and quality of life among heart failure patients. Heart Lung 2019(48):105–110

    Article  Google Scholar 

  74. Bekfani T, Nisser J, Derlien S, Hamadanchi A, Fröb E, Dannberg G, Möbius‐Winkler S (2021) Psychosocial factors, mental health, and coordination capacity in patients with heart failure with preserved ejection fraction compared with heart failure with reduced ejection fraction. ESC Heart Fail 8:3268–3278

  75. Esposito F, Mathieu-Costello O, Shabetai R, Wagner PD, Richardson RS (2010) Limited maximal exercise capacity in patients with chronic heart failure: partitioning the contributors. J Am Coll Cardiol 2010(55):1945–1954

    Article  Google Scholar 

  76. Haykowsky MJ, Brubaker PH, John JM, Stewart KP, Morgan TM, Kitzman DW (2011) Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J Am Coll Cardiol 2011(58):265–274

    Article  Google Scholar 

  77. Haykowsky MJ, Liang Y, Pechter D, Jones LW, McAlister FA, Clark AM (2007) A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients: the benefit depends on the type of training performed. J Am Coll Cardiol 2007(49):2329–2336

    Article  Google Scholar 

  78. Chen Y, Li Z, Zhu M, Cao Y (2012) Effects of exercise training on left ventricular remodelling in heart failure patients: an updated meta‐analysis of randomised controlled trials. Int J Clin Practice 66:782–791

  79. Coats A, Adamopoulos S, Radaelli A, McCance A, Meyer TE, Bernardi L, Forfar C (1992) Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 85:2119–2131

  80. Wisløff U, Støylen A, Loennechen JP, Bruvold M, Rognmo Ø, Haram PM, Lee SJ (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115:3086–3094

  81. Giallauria F, Galizia G, Lucci R, D’Agostino M, Vitelli A, Maresca L, Vigorito C (2009) Favourable effects of exercise-based cardiac rehabilitation after acute myocardial infarction on left atrial remodeling. Int J Cardiol 136:300–306

  82. Klempfner R, Tzur B, Sabbag A, Nahshon A, Gang N, Hay I, Rott D (2018) Participation in an exercise-based cardiac rehabilitation program and functional improvement of heart failure patients with preserved versus reduced left ventricular systolic function. Isr Med Assoc J IMAJ 20:358–362

  83. Papathanasiou JV, Petrov I, Tokmakova MP, Dimitrova DD, Spasov L, Dzhafer NS, Lopes AJ (2020) Group-based cardiac rehabilitation interventions. A challenge for physical and rehabilitation medicine physicians: a randomized controlled trial. Eur J Phys Rehabil Med 56:479–488

  84. Corbi G, Conti V, Troisi J, Colucci A, Manzo V, Di Pietro P, Ferrara N (2019) Cardiac rehabilitation increases SIRT1 activity and β-hydroxybutyrate levels and decreases oxidative stress in patients with HF with preserved ejection fraction. Oxid Med Cell Longev 2019

  85. Besnier F, Labrunée M, Richard L, Faggianelli F, Kerros H, Soukarié L, Gales C (2019) Short-term effects of a 3-week interval training program on heart rate variability in chronic heart failure. A randomised controlled trial. Ann Phys Rehabil Med 62:321–328

  86. McGregor G, Nichols S, Hamborg T, Bryning L, Tudor-Edwards R, Markland D, Powell R (2016) High-intensity interval training versus moderate-intensity steady-state training in UK cardiac rehabilitation programmes (HIIT or MISS UK): study protocol for a multicentre randomised controlled trial and economic evaluation. BMJ Open 6:e012843

  87. Fu T-C, Yang N-I, Wang C-H, Cherng W-J, Chou S-L, Pan T-L, Wang J-S (2016) Aerobic interval training elicits different hemodynamic adaptations between heart failure patients with preserved and reduced ejection fraction. Am J Phys Med Rehabil 95:15–27

  88. Haykowsky M, Brubaker P, Kitzman D (2012) Role of physical training in heart failure with preserved ejection fraction. Curr Heart Fail Rep 9:101–106

  89. Sullivan M, Higginbotham M, Cobb F (1988) Increased exercise ventilation in patients with chronic heart failure: intact ventilatory control despite hemodynamic and pulmonary abnormalities. Circulation 1988(77):552–559

    Article  Google Scholar 

  90. Tham YK, Bernardo BC, Ooi JY, Weeks KL, McMullen JR (2015) Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 89:1401–1438

  91. Brubaker PH, Kitzman DW (2007) Prevalence and management of chronotropic incompetence in heart failure. Curr Cardiol Rep 9:229–235

  92. Na S, W. KK, P. HC, and P. MJ, (2022) Effects of chronotropic incompetence on exercise capacity in people with heart failure versus age-matched controls. Heart Fail Rev 2022(27):795–809

    Article  Google Scholar 

  93. Høydal MA, Kirkeby‐Garstad I, Karevold A, Wiseth R, Haaverstad R, Wahba A, Ellingsen Ø (2018) Human cardiomyocyte calcium handling and transverse tubules in mid‐stage of post‐myocardial‐infarction heart failure. ESC Heart Fail 5:332–342

  94. Oka S-I, Sabry AD, Cawley KM, Warren JS (2020) Multiple levels of PGC-1α dysregulation in heart failure. Frontiers in Cardiovascular Medicine 2020(7):2

    Article  Google Scholar 

  95. Jia D, Hou L, Lv Y, Xi L, Tian Z (2019) Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGC‐1α/PI3K/Akt signaling. J Cell Physiol 234:23705–23718

  96. Vega RB, Konhilas JP, Kelly DP, Leinwand LA (2017) Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metab 25:1012–1026

  97. Braga M, Nascimento H, Nunes A, Araújo P, Pinto R, Rodrigues J, Rocha A (2020) Role of left ventricle function in cardiac rehabilitation outcomes in stage B heart failure patients. J Cardiopulm Rehabil Prev 40:E5-E9

  98. Keteyian SJ, Brawner CA, Schairer JR, Levine TB, Levine AB, Rogers FJ, Goldstein S (1999) Effects of exercise training on chronotropic incompetence in patients with heart failure. Am Heart J 138:233–240

  99. Erbs S, Höllriegel R, Linke A, Beck EB, Adams V, Gielen S, Hambrecht R (2010) Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function. Circulation: Heart Fail 3:486–494

  100. Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamann C, Kaiser R, Schuler G (1998) Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 98:2709–2715

  101. Hambrecht R, Niebauer J, Fiehn E, Kälberer B, Offner B, Hauer K, Schuler G (1995) Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am College Cardiol 25:1239–1249

  102. Hambrecht R, Gielen S, Linke A, Fiehn E, Yu J, Walther C, Schuler G (2000) Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: a randomized trial. Jama 283:3095–3101

  103. Kitzman DW, Brubaker PH, Herrington DM, Morgan TM, Stewart KP, Hundley WG, Haykowsky MJ (2013) Effect of endurance exercise training on endothelial function and arterial stiffness in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. J Am College Cardiol 62:584–592

  104. Tanaka S, Sanuki Y, Ozumi K, Harada T, Tasaki H (2018) Heart failure with preserved vs reduced ejection fraction following cardiac rehabilitation: impact of endothelial function. Heart Vessels 2018(33):886–892

    Article  Google Scholar 

  105. Zhang S, Li L, Chen W, Xu S, Feng X, Zhang L (2021) Natural products: the role and mechanism in low-density lipoprotein oxidation and atherosclerosis. Phytother Res 2021(35):2945–2967

    Article  Google Scholar 

  106. Linke A, Adams V, Schulze PC, Erbs S, Gielen S, Fiehn E, Hambrecht R (2005) Antioxidative effects of exercise training in patients with chronic heart failure: increase in radical scavenger enzyme activity in skeletal muscle. Circulation 111:1763–1770

  107. Slivnick J, Lampert BC (2019) Hypertension and heart failure. Heart Fail Clin 15:531–541

  108. Arjunan P, Trichur RV (2021) The impact of nurse-led cardiac rehabilitation on quality of life and biophysiological parameters in patients with heart failure: a randomized clinical trial. J Nurs Res 2021(29):e130

    Article  Google Scholar 

  109. Riedel S, Radzanowski S, Bowen TS, Werner S, Erbs S, Schuler G, Adams V (2015) Exercise training improves high-density lipoprotein-mediated transcription of proangiogenic microRNA in endothelial cells. Euro J Preven Cardiol 22:899–903

  110. Drexler H, Riede U, Münzel T, König H, Funke E, Just H (1992) Alterations of skeletal muscle in chronic heart failure. Circulation 1992(85):1751–1759

    Article  Google Scholar 

  111. Kitzman DW, Nicklas B, Kraus WE, Lyles MF, Eggebeen J, Morgan TM, Haykowsky M (2014) Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circulatory Physiol 2014(306):H1364–H1370

    Article  Google Scholar 

  112. Hambrecht R, Fiehn E, Yu J, Niebauer J, Weigl C, Hilbrich L, Schuler G (1997) Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J Am College Cardiol 29:1067–1073

  113. Tucker WJ, Haykowsky MJ, Seo Y, Stehling E, Forman DE (2018) Impaired exercise tolerance in heart failure: role of skeletal muscle morphology and function. Curr Heart Fail Rep 15:323–331

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization of the manuscript; MZ completed introduction and outcomes sections; EH completed the cardiac utilization section; RS completed the medical management section; RN completed the biological mechanisms section; All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Micah Zuhl.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 156 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, R.K., Solomon, R., Hosmer, E. et al. Cardiac rehabilitation utilization, barriers, and outcomes among patients with heart failure. Heart Fail Rev 28, 1239–1249 (2023). https://doi.org/10.1007/s10741-023-10309-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-023-10309-2

Keywords

Navigation