Skip to main content

Advertisement

Log in

Cardiac 31P MR spectroscopy: development of the past five decades and future vision—will it be of diagnostic use in clinics?

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

In the past five decades, the use of the magnetic resonance (MR) technique for cardiovascular diseases has engendered much attention and raised the opportunity that the technique could be useful for clinical applications. MR has two arrows in its quiver: One is magnetic resonance imaging (MRI), and the other is magnetic resonance spectroscopy (MRS). Non-invasively, highly advanced MRI provides unique and profound information about the anatomical changes of the heart. Excellently developed MRS provides irreplaceable and insightful evidence of the real-time biochemistry of cardiac metabolism of underpinning diseases. Compared to MRI, which has already been successfully applied in routine clinical practice, MRS still has a long way to travel to be incorporated into routine diagnostics. Considering the exceptional potential of 31P MRS to measure the real-time metabolic changes of energetic molecules qualitatively and quantitatively, how far its powerful technique should be waited before a successful transition from “bench-to-bedside” is enticing. The present review highlights the seminal studies on the chronological development of cardiac 31P MRS in the past five decades and the future vision and challenges to incorporating it for routine diagnostics of cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

[ADP]:

Adenosine diphosphate concentration

[AMP]:

Adenosine monophosphate concentration

[ATP]:

Adenosine triphosphate concentration

[PCr]:

Phosphocreatine concentration

2-DG:

2-Deoxyglucose

5′-NT:

5′-Nucleotidase

A3AR:

A3 adenosine receptor

AdR:

Adenosine receptors

ADR:

Adriamycin

AF:

Atrial fibrillation

AGAT:

Arginine:glycine amidinotransferase

AK:

Adenylate kinase

AoB:

Aortic banding

AS:

Aortic stenosis

AS:

Aortic stenosis

ATPase:

ATP synthase

BCAA:

Branched chain amino acid

BCW:

Normal cardiac work-states

BOAST:

Bloch-Siegert four angle saturation transfer

BP:

Blood pressure

CD:

Chagas’ disease

CF:

Coronary perfusion flow

CH:

Cardiac hypertrophy

CHF:

Chronic heart failure

CK:

Creatine kinase

CLN:

Calcineurin

CMRS:

Cardiac MRS

CN:

Sodium cyanide

CP:

Chuvash polycythemia

Cr:

Creatine

CrT-OE:

Creatine transporter overexpress

CSI:

Chemical shift imaging

dATP:

2-Deoxy-ATP

DCD:

Diastolic chamber distensibility

DCM:

Dilated cardiomyopathy

DGP:

2-Deoxyglucose-6-phosphate

DKO:

Double knockout

DOX:

Doxorubicin

DpDb:

Dopamine and dobutamine

DRESS:

Depth-resolved surface coil spectroscopy

EDP:

End diastolic pressure

EDV:

End diastolic volume

EF:

Ejection fraction

EMPA:

Empagliflozin

eNO:

Endogenous nitric oxide

ERT:

Enzyme replacement therapy

ESV:

End systolic volume

ET:

Exercise training

EUT:

Euthyroid

F-2,6-P2:

Fructose-2,6-bisphosphate

FAST:

Four-angle saturation transfer

FD:

Fabry disease

FHC:

Familial hypertrophic cardiomyopathy

FID:

Free induction decay

GA:

Guanidinoacetate

GAMT:

Guanidinoacetate N-methyltransferase

GH:

Growth hormone

GLB:

Glibenclamide

GLUT1:

Glucose transporter protein 1

GLUT4 (G4N):

Glucose transport protein 4

HA:

Homoarginine

HB:

Hibernating myocardium

HC:

Healthy control

HCM:

Hypertrophic cardiomyopathy

HCW:

Very high cardiac work-states

HEP:

High-energy phosphate

hESC-VCs:

Human nascent stem cell–based vascular cells

HFHS:

High-fat-high-sucrose

HHD:

Hypertensive heart disease

HIF:

Hypoxia inducible factor

HL:

Halothane

HR:

Heart rate

HT:

Heart transplants

I/R:

Ischemia/reperfusion

IA:

Iodoacetamide

IDC:

Idiopathic dilated cardiomyopathy

IGF-1:

Insulin-like growth factor-1

IPC:

Ischemic pre-conditioning

IRS:

Insulin-receptor-substrate

ISIS:

Surface coil image–based in vivo spectroscopy

ISO:

1,5-Dihydroxyisoquinoline

KCl:

Potassium chloride

kfor :

Pseudo-first-order rate constant

KO:

Knockout

LGE:

Late gadolinium enhancement

LV:

Left ventricle

LVDP:

Left ventricular developed pressure

LVEDP:

Left ventricle end diastolic pressure

LVEF:

Left ventricle ejection fraction

LVH:

Left ventricular hypertrophy

LVmass:

Left ventricle mass

LVP:

LV pressure

LVSP:

Left ventricular systolic pressure

MBF:

Myocardial blood flow

MCK:

Myofibrillar isoform of CK

MHD:

Metabolic heart disease

MI:

Myocardial infarction

MPC:

Multi-potent progenitor cells

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy,

MST:

Magnetization saturation transfer

mtCaMKII:

Mitochondrial calmodulin kinase II

MtCK:

Mitochondrial isoforms of CK

MVO2 :

Oxygen consumption

NHE:

Na+/H+ exchange

NMR:

Nuclear magnetic resonance

NNA:

Neural network analysis

NO:

Nitric oxide

NTP:

Nucleoside triphosphate

NYHA:

New York Heart Association

OP:

Oxidative phosphorylation

PARS:

Poly(ADP-ribose) synthetase

PBS:

Phosphate-buffered saline

PCr/ATP ratio:

Phosphocreatine/adenosine triphosphate ratio

PD:

Phospholamban-deficient

PDH:

Pyruvate dehydrogenease

PF:

Preserved ventricular function

PFK:

Phosphofructokinase

PFR:

Peak filling rate

PGAA:

Guanidinoacetate phosphate

PI3-k:

Phosphatidylinositol-3-kinase

PKC:

Protein kinase C

PP:

Phenylphosphonate

PPARα:

Peroxisome proliferator-activated receptor α

RF:

Radiofrequency

ROS:

Reactive oxygen species

RPP:

Rate-pressure product

RSV:

Resveratrol

RV:

Right ventricle hypertrophy

RV:

Right ventricle

SAR:

Specific absorption rate

SERCA:

Sarco-endoplasmic reticulum Ca2+-ATPase

SGLT2:

Sodium-glucose co-transporter 2

SHR:

Spontaneously hypertensive rat

SLIF:

Scattered light intensity fluctuations

SLOOP:

Spatial localized with optimum point-spread

SNAC:

S-nitrosoacetylcysteine

SNR:

Signal-to-noise ratio

SOD:

Superoxide dismutase

ssTnI:

Slow skeletal muscle troponin I

STEAM:

Stimulated echo acquisition mode

STF:

Systolic thickening fraction

StreST:

Stressed saturation transfer

STZ:

Streptozotocin

SV:

Stroke volume

T2D:

Type 2 diabetes

T3:

Hyperthyroid

TAC:

Transverse aorta constriction

TAN:

Adenine nucleotide pool

TCA:

Tricarboxylic acid

TG:

Transgenic

TgRR:

Ribonucleotide reductase

TnI:

Troponin I

TRiST:

Triple repetition time saturation transfer

TwiST:

Two-repetition time saturation transfer

VB:

Ventricular fibrillation

VD:

Ventricular dysfunction

WT:

Wild type

XOI:

Xanthine oxidase inhibition

ZDF:

Zucker diabetic fatty

References

  1. Akki A, Gupta A, Weiss RG (2013) Magnetic resonance imaging and spectroscopy of the murine cardiovascular system. Am J Physiol heart Circ Physiol 304:H633–H648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gupta A, Houston B (2021) Cardiac 1H MR spectroscopy: development of the past five decades and future perspective. Heart Fail Rev 26:839–859

    Article  PubMed  Google Scholar 

  3. Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38

    Article  CAS  Google Scholar 

  4. Bloch F (1946) Nuclear induction. Phys Rev 70:460–474

    Article  CAS  Google Scholar 

  5. Moon RB, Richards JH (1973) Determination of intracellular pH by 31-P magnetic resonance. J Biol Chem 1973(248):7276

    Article  Google Scholar 

  6. Henderson TO, Costello AJR, Gmachi A (1974) Phosphate metabolism in intact human erythrocytes: determination by phosphorus31P nuclear magnetic resonance spectroscopy. Proc Natl Acad Sci USA 71:2487–2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoult DI, Busby SJW, Gadian DG, Radda GK, Richards RE, Seeley PJ (1974) Observation of tissue metabolites using P-31 nuclear magnetic resonance. Nature 252:285–287

    Article  CAS  PubMed  Google Scholar 

  8. Gadian DG, Hoult DI, Radda GK, Seeley PJ, Chance B, Barlow C (1976) Phosphorus nuclear magnetic resonance studies on normoxic and ischemic cardiac tissue. Proc Natl Acad Sci USA 73(12):4446–4448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burt CT, Glonek T, Barany M (1976) Phosphorus-31 nuclear magnetic resonance detection of unexpected phosphodiesters in muscle. Biochemistry 15(22):4850–4853

    Article  CAS  PubMed  Google Scholar 

  10. Jacobus WE, Taylor GJ, Hollis DP, Nunnaly RL (1977) Phosphorus nuclear magnetic resonance of perfused working rat hearts. Nature 265:756–758

    Article  CAS  PubMed  Google Scholar 

  11. Hollis DP, Nunnally RL, Jacobus WE, Taylor GJ (1977) Detection of regional ischemia in perfused beating hearts by phosphorus nuclear magnetic resonance. Biochem Biophy Res Comm 75(4):1086–1091

    Article  CAS  Google Scholar 

  12. Garlick PB, Radda GK, Seeley PJ (1979) Studies of acidosis in the ischemic heart by phosphorus nuclear magnetic resonance. Biochem J 184:547–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pieper GM, Todd GL, Wu ST, Salhany JM, Clayton FC, Eliot RS (1980) Attenuation of myocardial acidosis by propranolol during ischemic arrest and reperfusion: evidence with 31P nuclear magnetic resonance. Cardiovas Res 14:646–653

    Article  CAS  Google Scholar 

  14. Pernot AC, Ingwall JS, Menasche P, Grousset C, Bercot M, Mollet M, Piwnica A, Fossel ET (1981) Limitations of potassium cardioplegia during cardiac ischemic arrest: a phosphorus 31 nuclear magnetic resonance study. Annal Thora Surgery 32(6):536–545

    Article  CAS  Google Scholar 

  15. Pernot AC, Ingwall JS, Menasche P, Grousset C, Bercot M, Piwnica A, Fossel ET (1983) Evaluation of high-energy phosphate metabolism during cardioplegic arrest and reperfusion: a phosphorus-31 nuclear magnetic resonance study. Circulation 67(6):1296–1303

    Article  CAS  PubMed  Google Scholar 

  16. Bailey IA, Williams SR, Radda GK, Gadian DG (1981) Activity of phosphorylase in total global ischemia in the rat heart: a phosphorus-31 nuclear magnetic resonance study. Biochem J 196:171–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bottomley PA, Herfkens RJ, Smith LS, Brazzamano S, Blinder R, Hedlund LW, Swain JL, Redington RW (1985) Noninvasive detection and monitoring of regional myocardial ischemia in situ using depth-resolved 31P NMR spectroscopy. Proc Natl Acad Sci USA 82:8747–8751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neubauer S, Hamman BL, Perry SB, Bittl JA, Ingwall JS (1988) Velocity of the creatine kinase reaction decreases in postischemic myocardium: a 31P-NMR magnetization transfer study of the isolated ferret heart. Circ Res 63:1–15

    Article  CAS  PubMed  Google Scholar 

  19. Berthiau F, Garnier D, Argibay JA, Seguin F, Pourrias B, Grivet JP, Pape AL (1989) Decrease in internal H+ and positive inotropic effect of heptaminol hydrochloride: a 31P n.m.r. spectroscopy study in rat isolated heart. Br J Pharmacol 98:1233–1240

  20. Schaefer S, Schwartz GS, Gober JR, Wong AK, Camacho A, Massie B, Weiner MW (1990) Relationship between myocardial metabolites and contractile abnormalities during graded regional ischemia. J Clin Invest 85:706–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weiss RG, Gerstenblith G, Lakatta EG (1990) Calcium oscillations index the extent of calcium and predict functional recovery during reperfusion in rat myocardium. J Clin Invest 85:757–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weiss RG, Bottomley PA, Hardy CJ, Gerstenblith G (1990) Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery. N Engl J Med 323:1593–1600

    Article  CAS  PubMed  Google Scholar 

  23. Hardy CJ, Weiss RG, Bottomley PA, Gerstenblith G (1991) Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am Heart J 122:795–801

    Article  CAS  PubMed  Google Scholar 

  24. Bak MI, Ingwall JS (1992) NMR-invisible ATP in heart: fact or fiction. Am J Physiol 262:E943–E947

    CAS  PubMed  Google Scholar 

  25. Elliott AC, Smith GL, Eisner DA, Allen DG (1992) Metabolic changes during ischemia and their role in contractile failure in isolated ferret hearts. J Physiol 454:467–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Clarke K, Stewart LC, Neubauer S, Balschi JA, Smith TW, Ingwall JS (1993) Extracellular volume and transsarcolemmal proton movement during ischemia and reperfusion: a 31P NMR spectroscopic study of the isovolumic rat heart. NMR in Biomed 6:278–286

    Article  CAS  Google Scholar 

  27. de Albuquerque CP, Gerstenblith G, Weiss RG (1994) Importance of metabolic inhibition and cellular pH in mediating preconditioning contractile and metabolic effects in rat hearts. Circ Res 74:139–150

    Article  PubMed  Google Scholar 

  28. Rath DP, Bailey M, Zhang H, Jiang Z, Abduljalil AM, Weisbrode S, Hamlin RL, Robitaille PML (1995) 31P-nuclear magnetic resonance studies of chronic myocardial ischemia in the Yucatan micropig. J Clin Invest 95:151–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stewart LC, Kelly RA, Atkinson DE, Ingwall JS (1995) pH heterogeneity in aged hypertensive rat hearts distinguishes reperfused from persistently ischemic myocardium. J Mol Cell Cardiol 27:321–333

    Article  CAS  PubMed  Google Scholar 

  30. Wang P, Chen H, Qin H, Sankarapandi S, Becher MW, Wong PC, Zweier JL (1998) Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury. Proc Natl Acad Sci 95:4556–4560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weiss RG, Mejia MA, Kass DA, DiPaula AF, Becker LC, Gerstenblith G, Chacko VP (1999) Preservation of canine myocardial high-energy phosphate during low-flow ischemia with modification of hemoglobin-oxygen affinity. J Clin Invest 103:739–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tian R, Miao W, Spindler M, Javadpour MM, Mckinney R, Bowman JC, Buttrick PM, Ingwall JS (1999) Long-term expression of protein kinase C in adult mouse hearts improves postischemic recovery. Proc Natl Acad Sci 96:13536–13541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Docherty JC, Kuzio B, Silvester JA, Bowes J, Thiemermann C (1999) An inhibitor of poly (ADP-ribose) synthetase activity reduces contractile dysfunction and preserves high energy phosphate levels during reperfusion of the ischemic rat heart. Br J Pharmacol 127:1518–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Allen DG, Morris PG, Orchard CH, Pirolo JS (1985) A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis. J Physiol 361:185–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wexler LF, Weinberg EO, Ingwall JS, Apstein CS (1986) Acute alterations in diastolic left ventricular chamber distensibility: mechanistic differences between hypoxemia and ischemia in isolated perfused rabbit and rat hearts. Circ Res 59:515–528

    Article  CAS  PubMed  Google Scholar 

  36. Bittl JA, Balschi JA, Ingwall JS (1987) Contractile failure and high-energy phosphate turnover during hypoxia: 31P NMR surface coil studies in living rat. Circ Res 60:871–878

    Article  CAS  PubMed  Google Scholar 

  37. Wexler LF, Lorell BH, Momomura S, Weinberg EO, Ingwall JS, Apstein CS (1988) Enhanced sensitivity to hypoxia-induced diastolic dysfunction in pressure-overload left ventricular hypertrophy in the rat: role of high-energy phosphate depletion. Circ Res 62:766–775

    Article  CAS  PubMed  Google Scholar 

  38. Neubauer S, Ingwall JS (1989) Verapamil attenuates ATP depletion during hypoxia: 31P NMR studies of the isolated rat heart. J Mol Cell Cardiol 21:1163–1178

    Article  CAS  PubMed  Google Scholar 

  39. Neubauer S, Newell JB, Ingwall JS (1992) Metabolic consequences and predictability of ventricular fibrillation in hypoxia. Circulation 86:302–310

    Article  CAS  PubMed  Google Scholar 

  40. Bak MI, Ingwall JS (1994) Acidosis during ischemia promotes adenosine triphosphate resynthesis in postischemic rat heart. J Clin Invest 93:40–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Portmand MA, Standaert TA, Ning XH (1995) Relation of myocardial oxygen consumption and function to high energy phosphate utilization during graded hypoxia and reoxygenation in sheep in vivo. J Clin Invest 95:2134–2142

    Article  Google Scholar 

  42. Hochachka PW, Clark CM, Holden JE, Stanley C, Ugurbil K, Menon RS (1996) 31P magnetic resonance spectroscopy of the sherpa heart: a phosphocreatine/adenosine triphosphate signature of metabolic defense against hypobaric hypoxia. Proc Natl Acad Sci 93:1215–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bak MI, Wei JY, Ingwall JS (1998) Interaction of hypoxia and aging in the heart: analysis of high energy phosphate content. J Mol Cell Cardiol 30:661–672

    Article  CAS  PubMed  Google Scholar 

  44. Bottomley PA, Herfkens RJ, Smith LS, Bashore TM (1987) Altered phosphate metabolism in myocardial infarction: P-31 MRS. Radiology 165:703–707

    Article  CAS  PubMed  Google Scholar 

  45. Friedrich J, Apstein CS, Ingwall JS (1995) 31P NMR spectroscopic imaging of regions of remodeled myocardium in the infarcted rat heart. Circulation 92:3527–3538

    Article  CAS  PubMed  Google Scholar 

  46. Neubauer S, Harn M, Neumann A, Tian R, Hu K, Laser M, Friedrich J, Gaudron P, Schnackerz K, Ingwall JS, Erti G (1995) Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction. J Clin Invest 95:1092–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kalil-Filho R, De Albuquerque CP, Weiss RG, Mocelim A, Bellotti G, Cerri G. Pileggi F (1997) Normal high energy phosphate ratios in a stunned human myocardium. J Am Coll Cardiol 30:1228–1232

  48. Bittl JA, Balschi JA, Ingwall JS (1987) Effects of norepinephrine infusion on myocardial high-energy phosphate content and turnover in the living rat. J Clin Invest 79:1852–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Unitt JF, McCormack JG, Reid D, MacLachlan LK, England PJ (1989) Direct evidence for a role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in the stimulated rat heart. Biochem J 262:293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Corretti MC, Koretsune Y, Kusuoka H, Chacko VP, Zweier JL, Marban E (1991) Glycolytic inhibition and calcium overload as consequences of exogenously generated free radicals in rabbit hearts. J Clin Invest 88:1014–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Figueredo VM, Brandes R, Weiner MW, Massie BM, Camacho SA (1992) Cardiac contractile dysfunction during mild coronary flow reductions is due to an altered calcium-pressure relationship in rat hearts. J Clin Invest 90:1794–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Itoh S, Mori T, Tominaga M, Ishikawa M, Koga K, Yabuuchi Y (1995) Differential effects of OPC-18790, amrinone and dobutamine on cardiac function and energy metabolism in the guinea-pig isolated ischemic heart. Bri J Pharma 114:1090–1096

    Article  CAS  Google Scholar 

  53. Nascimben L, Friedrich J, Liao R, Pauletto P, Pessina AC, Ingwall JS (1995) Enalapril treatment increases cardiac performance and energy reserve via the creatine kinase reaction in myocardium of Syrian myopathic hamsters with advanced heart failure. Circulation 91:1824–1833

    Article  CAS  PubMed  Google Scholar 

  54. Gross WL, Bak MI, Ingwall JS, Arstall MA, Smith TW, Balligand JL, Kell RA (1996) Nitric oxide inhibits creatine kinase and regulates rat heart contractile reserve. Proc Natl Acad Sci 93:5604–5609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tian R, Christe ME, Spindler M, Hopkins JCA, Halow JM, Camacho SA, Ingwall JS (1997) Role of MgADP in the development of diastolic dysfunction in the intact beating rat heart. J Clin Invest 99:745–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cittadini A, Ishiguro Y, Stromer H, Spindler M, Moses AC, Clark R, Douglas PS, Ingwall JS, Morgan JP (1998) Insulin-like growth factor-1 but not growth hormone augments mammalian myocardial contractility by sensitizing the myofilament to Ca2+ through a wortmannin-sensitive pathway. Circ Res 83:50–59

    Article  CAS  PubMed  Google Scholar 

  57. Schwartz GG, Steinman S, Garcia J, Greyson C, Massie B, Weiner MW (1992) Energetics of acute pressure overload of the porcine right ventricle. J Clin Invest 89:909–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang J, Merkle H, Hendrich K, Garwood M, From AHL, Ugurbil U, Bache RJ (1993) Bioenergetic abnormalities associated with severe left ventricular hypertrophy. J Clin Invest 92:993–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liao R, Nascimben L, Friedrich J, Gwathmey JK, Ingwall JS (1996) Decreased energy reserve in an animal model of dilated cardiomyopathy relationship to contractile performance. Circ Res 78:893–902

    Article  CAS  PubMed  Google Scholar 

  60. Spencer RGS, Buttrick PM, Ingwall JS (1997) Function and bioenergetics in isolated perfused trained rat hearts. Am J Physiol 272:H409–H417

    CAS  PubMed  Google Scholar 

  61. Tian R, Nascimben L, Ingwall JS, Lorell BH (1997) Failure to maintain a low ADP concentration impairs diastolic function in hypertrophied rat hearts. Circulation 96:1313–1319

    Article  CAS  PubMed  Google Scholar 

  62. Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, Kochsiek K (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96:2190–2196

    Article  CAS  PubMed  Google Scholar 

  63. Spindler M, Saupe KW, Christe ME, Sweeney HL, Seidman CE, Seidman JG, Ingwall JS (1998) Diastolic dysfunction and altered energetics in the αMHC403/+ mouse model of familial hypertrophic cardiomyopathy. J Clin Invest 101:1775–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Abel ED, Kaulbach HC, Tian R, Hopkins JCA, Duffy J, Doetschman T, Minnemann T, Boers ME, Hadro E, Berghaus CO, Quist W, Lowell BB, Ingwall JS, Kahn BB (1999) Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J Clin Invest 104:1703–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Saupe KW, Spindler M, Tian R, Ingwall JS (1998) Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase. Circ Res 82:898–907

    Article  CAS  PubMed  Google Scholar 

  66. Saupe KW, Spindler M, Hopkins JCA, Shen W, Ingwall JS (2000) Kinetic, thermodynamic, and developmental consequences of deleting creatine kinase isoenzymes from the heart. J Bio Chem 275:19742–19746

    Article  CAS  Google Scholar 

  67. Bottomley PA, Weiss RG, Hardy CJ, Baumgarter WA (1991) Myocardial high-energy phosphate metabolism and allograft rejection in patients with heart transplants. Radiology 181:67–75

    Article  CAS  PubMed  Google Scholar 

  68. Brunotte F, Peiffert B, Escanye JM, Pinelli G, Zamorano J, Walker PM, Robert J, Villemot JP (1992) Nuclear magnetic resonance spectroscopy of excised human hearts. Br Heart J 68:272–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pieper GM, Salhany JM, Murray WJ, Wu ST, Eliot RS (1983) Abnormal phosphocreatine metabolism in perfused diabetic hearts: a 31P NMR study. Biochem J 210:477–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Spindler M, Saupe KW, Tian R, Ahmad S, Matlib MA, Ingwall JS (1999) Altered creatine kinase enzyme kinetics in diabetic cardiomyopathy. A 31P NMR magnetization transfer study of the intact beating rat heart. J Mol Cell Cardiol 31:2175–2189

  71. Garlick PB, Radda GK, Seeley PJ (1977) Phosphorus NMR studies on perfused heart. Biochem Biophy Res Commun 74:1256–1262

    Article  CAS  Google Scholar 

  72. Nunnally RL, Hollis DP (1979) Adenosine triphosphate compartmentation in living hearts: a phosphorus nuclear magnetic resonance saturation transfer study. Biochemistry 18:3642–3646

    Article  CAS  PubMed  Google Scholar 

  73. Grove TH, Ackerman JJH, Radda GK, Bore PJ (1980) Analysis of rat heart in vivo by phosphorus nuclear magnetic resonance. Proc Natl Acad Sci 77:299–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fossel ET, Morgan HE, Ingwall JS (1980) Measurement of changes in high energy phosphates in the cardiac cycle by using gated 31P nuclear magnetic resonance. Proc Natl Acad Sci 77:3654–3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mathews PM, Bland JL, Gadian DG, Radda GK (1981) The steady-state rate of ATP synthesis in the perfused rat heart measured by 31P NMR saturation transfer. Biochem Biophy Res Comm 103:1052–1059

    Article  Google Scholar 

  76. Matthews PM, Bland JL, Gadian DG, Radda GK (1982) A 31P NMR saturation transfer study of the regulation of creatine kinase in the rat heart. Biochem Biophy Acta 721:312–320

    Article  CAS  Google Scholar 

  77. Kupriyanov VV, Steinschneider AY, Ruuge EK, Kapel’ko VI, Zueva MY, Lakomkin VL, Smirnov VN, Saks VA (1984) Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. Biochem Biophy Acta 805:319–331

  78. Bittl JA, Ingwall JS (1985) Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study. J Biol Chem 260:3512–3517

  79. Gard JK, Kichura GM, Ackerman JJH, Eisenberg JD, Billadello JJ, Sobel BE, Gross RW (1985) Quantitative 31P nuclear magnetic resonance analysis of metabolite concentrations in Langendorff-perfused rabbit hearts. Biophys J 48:803–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bottomley PA (1985) Noninvasive study of high energy phosphate metabolism in human heart by depth-resolved 31P NMR spectroscopy. Science 229:769–772

    Article  CAS  PubMed  Google Scholar 

  81. Kantor HL, Briggs RW, Metz KR, Balaban RS (1986) Gated in in vivo examination of cardiac metabolites with 31P nuclear magnetic resonance. Am J Physiol Heart Circ Physiol 251:H171–H175

    Article  CAS  Google Scholar 

  82. Bittl JA, Ingwall JS (1986) The energetics of myocardial stretch. Creatine kinase flux and oxygen consumption in the noncontracting rat heart. Circ Res 58:378–383

  83. Zahler R, Bittl JA, Ingwall JS (1987) Analysis of compartmentation of ATP in skeletal and cardiac muscle using 31P NMR saturation transfer. Biophys J 51:883–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Blackledge MJ, Rajagopalan B, Oberhaensli RD, Bolas NM, Styles P, Radda GK (1987) Quantitative studies of human cardiac metabolism by 31P rotating-frame NMR. Proc Natl Acad Sci 84:4283–4287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Matson GB, Twieg DB, Karczmar GS, Lawry TJ, Gober JR, Valenza M, Boska MD, Weiner MW (1988) Application of image-guided surface coil P-31 MR spectroscopy of human liver, heart, and kidney. Radiology 169:541–547

    Article  CAS  PubMed  Google Scholar 

  86. Perry SB, McAuliffe J, Balschi JA, Hickey PR, Ingwall JS (1988) Velocity of the creatine kinase reaction in the neonatal rabbit heart: role of mitochondrial creatine kinase. Biochemistry 27:2165–2172

    Article  CAS  PubMed  Google Scholar 

  87. Spencer RGS, Balechi JA, Leigh JS, Ingwall JS (1988) ATP synthesis and degradation rates in the perfused rat heart. 31P-NMR double saturation transfer measurements. Biophys J 54:921–929

  88. Grist TM, Kneeland JB, Rilling WR, Jesmanowicz A, Froncisz W, Hyde JS (1989) Gated cardiac MR imaging and 31P MR spectroscopy in humans at 1.5T. Radiology 170:357–361

  89. Heineman FW, Balaban RS (1990) Phosphorus-31 NMR analysis of transient changes of canine myocardial metabolism in vivo. J Clin Invest 85:843–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Portman MA, Ning XH (1990) Developmental adaptations in cytosolic phosphate content and pH regulation in the sheep heart in vivo. J Clin Invest 86:1823–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Friedrich J, Nascimben L, Liao R, Ingwall JS (1993) Phosphocreatine T1 measurements with and without exchange in the heart. Mag Reso Med 30:45–50

    Article  CAS  Google Scholar 

  92. Hamman BL, Bittl JA, Jacobus WE, Allen PD, Spencer RS, Tian R, Ingwall JS (1995) Inhibition of the creatine kinase reaction decreases the contractile reserve of isolated rat hearts. Am J Physol heart Circ Physiol 269:H1030–H1036

    Article  CAS  Google Scholar 

  93. Chu G, Luo W, Slack JP, Tilgmann C, Sweet WE, Spindler M, Saupe KW, Boivin GP, Moravec CS, Matlib MA, Grupp IL, Ingwall JS, Kranias EG (1996) Compensatory mechanisms associated with the hyperdynamic function of phospholamban-deficient hearts. Circ Res 79:1064–1076

    Article  CAS  PubMed  Google Scholar 

  94. Bottomley PA, Atalar E, Weiss RG (1996) Human cardiac high-energy phosphate metabolite concentrations by 1D-resolved NMR spectroscopy. Mag Reso Med 35:664–670

    Article  CAS  Google Scholar 

  95. Saupe KW, Eberli FR, Ingwall JS, Apstein CS (1999) Hypoperfusion-induced contractile failure does not require changes in cardiac energetics. Am J Physiol Heart Circ Physiol 276:H1715–H1723

    Article  CAS  Google Scholar 

  96. Chacko VP, Aresta F, Chacko SM, Weiss RG (2000) MRI/MRS assessment of in vivo murine cardiac metabolism, morphology, and function at physiological heart rates. Am J Physiol Heart Circ Physiol 279:H2218–H2224

    Article  CAS  PubMed  Google Scholar 

  97. Cross HR, Murphy E, Black R, Auchampach J, Steenbergen C (2002) Overexpression of A3 adenosine receptors decreases heart rate, preserves energetics, and protects ischemic hearts. Am J Physiol Heart Circ Physiol 283:H1562–H1568

    Article  CAS  PubMed  Google Scholar 

  98. Ingwall JS (2002) Myocardial energy metabolism in health and disease; is creatine kinase a target for AMP-activated protein kinase in the heart? J Mol Cell Cardiol 34:1111–1120

    Article  CAS  PubMed  Google Scholar 

  99. Nahrendorf M, Hiller KH, Greiser A, Kohler S, Neuberger T, Hu K, Waller C, Albrecht M, Neubauer S, Haase A, Ertl G, Bauer WR (2003) Chronic coronary artery stenosis induces impaired function of remote myocardium: MRI and spectroscopy study in rat. Am J Physiol Heart Circ Physiol 285:H2712–H2721

    Article  CAS  PubMed  Google Scholar 

  100. Bak MI, Ingwall JS (2003) Contribution of Na+/H+ exchange to Na+ overload in the ischemic hypertrophied hyperthyroid rat heart. Cardiovasc Res 57:1004–1014

    Article  CAS  PubMed  Google Scholar 

  101. Miyamae M, Fujiwara H, Tanaka M, Yokota R, Takemure G, Itoh S, Domae N, Figueredo VM (2003) Oxygen radicals mediate ultrastructural and metabolic protection of preconditioning in vivo pig hearts. Exp Clin Cardiol 7(4):173–179

    Google Scholar 

  102. Day SM, Westfall MV, Fomicheva EV, Hoyer K, Yasuda S, Cross NC, D’Alecy LG, Ingwall JS, Metzger JM (2006) Histidine button engineered into cardiac troponin I protects the ischemic and failing heart. Net Med 12(2):181–189

    Article  CAS  Google Scholar 

  103. Pinz I, Robbins J, Rajasekaran NS, Benjamin IJ, Ingwall JS (2008) Unmasking different mechanical and energetic roles for the small heat shock proteins CryAB and HSPB2 using genetically modified mouse hearts. FESEB J 22:84–92

    Article  CAS  Google Scholar 

  104. Wu F, Zhang EY, Zhang J, Bache RJ, Beard DA (2008) Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischemic hearts. J Physiol 586(17):4193–4208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. O’Donnell JM, Pound K, Xu X, Lewandowski ED (2009) SERCA1 expression enhances the metabolic efficiency of improved contractility in post-ischemic heart. J Mol Cell Cardio 47:614–621

    Article  Google Scholar 

  106. Jameel MN, Li Q, Mansoor A, Xiong Q, Swingen C, Zhang J (2011) Long-term preservation of myocardial energetic in chronic hibernating myocardium. Am J Physiol Heart Circ Physiol 300:H836–H844

    Article  CAS  PubMed  Google Scholar 

  107. Lee J, Hu Q, Mansoor A, Kamdar F, Zhang J (2011) Effect of acute xanthine oxidase inhibition on myocardial energetics during basal and very high cardiac workstates. J Cardiovasc Trans Res 4:504–513

    Article  Google Scholar 

  108. Pound KM, Arteaga GM, Fasano M, Wilder T, Fischer SK, Warren CM, Wende AR, Farjah M, Abel ED (2011) Expression of slow skeletal Tn1 in adult mouse hearts confers metabolic protection to ischemia. J Mol Cell Cardiol 51:236–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Akki A, Su J, Yano T, Gupta A, Wang Y, Leppo MK, Chacko VP, Steenbergen C, Weiss RG (2012) Creatine kinase overexpression improves ATP kinetics and contractile function in postischemic myocardium. Am J Physiol Heart Circ Physiol 303:H844–H852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lygate CA, Bohl S, Hove MT, Faller KME, Ostrowski PJ, Zervou S, Medway DJ, Aksentijevic D, Montefiore LS, Wallis J, Clarke K, Watkins H, Schneider JE, Neubauer S (2012) Moderate elevation of nirtocellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction. Cardiovasc Res 96:466–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Slingo M, Cole M, Carr C, Curtis MK, Dodd M, Giles L, Heather LC, Tyler D, Clarke K, Robbins PA (2016) The von Hippel-Lindau Chuvash mutation in mice alters cardiac substrate and high-energy phosphate metabolism. Am J Physiol heart Circ Physiol 311:H759–H767

    Article  PubMed  PubMed Central  Google Scholar 

  112. Li T, Zhang Z, Kolwich SC, Abell L, Roe ND, Kim M, Zhou B, Cao Y, Ritterhoff J, Gu H, Raftery D, Sun H, Tian R (2017) Defective branched chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to ischemia-reperfusion injury. Cell Metab 25:374–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Holloway C, Cochlin L, Codreanu I, Bloch E, Fatemian M, Szmigielski C, Atherton H, Heather L, Francis J, Neubauer S, Robbins P, Montgomery H, Clarke K (2011) Normobaric hypoxia impairs human cardiac energetics. FESEB J 25:3130–3135

    Article  CAS  Google Scholar 

  114. Holloway C, Montgomery HE, Murray AJ, Cochlin LE, Codreanu I, Hopwood N, Johnson AW, Rider OJ, Levett DZH, Tyler DJ, Francis JM, Neubauer S, Grocott MPW, Clarke K (2011) Cardiac response to hypobaric hypoxia: persistent changes in cardiac mass, function, and energy metabolism after a trek to Mt. Everest base camp FASEB J 25:792–796

    Article  CAS  PubMed  Google Scholar 

  115. Cole MA, Jamil AH, Heather LC, Murray AJ, Sutton ER, Slingo M, Montefiore LS, Tan SC, Aksentijevic D, Gildea OS, Stuckey DJ, Yeoh KK, Carr CA, Evans RD, Aasum E, Schofield CJ, Ratcliffe PJ, Neubauer S, Robbins PA, Clarke K (2016) On the pivotal role of PPARα in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury. FASEB J 30:2684–2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bottomley PA, Weiss RG (2001) Noninvasive localized MR quantification of creatine kinase metabolites in normal and infarction canine myocardium. Radiology 219:411–418

    Article  CAS  PubMed  Google Scholar 

  117. Naumova AV, Chacko VP, Ouwerkerk R, Stull L, Marban E, Weiss RG (2006) Xanthine oxidase inhibitors improve energetics and function after infarction in failing mouse hearts. Am J Physiol Heart Circ Physiol 290:H837–H843

    Article  CAS  PubMed  Google Scholar 

  118. Murray AJ, Lygate CA, Cole MA, Carr CA. Radda GK, Neubauer S, Clarke K (2006) Insulin resistance, abnormal energy metabolism and increased ischemic damage in the chronically infarcted rat heart. Cardiovasc Res 71:149–157

  119. Feygin J, Hu Q, Swingen C, Zhang J (2008) Relationship between regional myocardial wall stress and bioenergetics in hearts with left ventricular hypertrophy. Am J Physiol Heart Circ Physiol 294:H2313–H2321

    Article  CAS  PubMed  Google Scholar 

  120. Bottomley PA, Wu KC, Gerstenblith G, Schulman SP, Steinberg A, Weiss RG (2009) Reduced myocardial creatine kinase flux in human myocardial infarction. Circulation 119:1918–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gnecchi M, He H, Melo LG, Noiseux N, Morello F, De Boer RA, Zhang L, Pratt RE, Dzau VJ, Ingwall JS (2009) Early beneficial effects of bone marrow-derived mesenchymal stem cells overexpressing Akt on cardiac metabolism after myocardial infarction. Stem Cells 27:971–979

    Article  CAS  PubMed  Google Scholar 

  122. Jameel MN, Li Q, Mansoor A, Qiang X, Sarver A, Wang X, Swingen C, Zhang J (2010) Long-term functional improvement and gene expression changes after bone marrow-derived multipotent progenitor cell transplantation in myocardial infarction. Am J Physiol Heart Circ Physiol 298:H1348–H1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xiong Q, Ye L, Zhang P, Lepley M, Swingen C, Zhang L, Kaufman DS, Zhang J (2012) Bioenergetic and functional consequences of cellular therapy. Activation of endogenous cardiovascular progenitor cells. Circ Res 111:455–468

  124. Gao L, Cui W, Zhang P, Jang A, Zhu W, Zhang J (2016) 31P NMR 2D mapping of creatine kinase forward flux rate in hearts with postinfarction left ventricular remodeling in response to cell therapy. PLoS ONE 11(9):e01621149

    Article  Google Scholar 

  125. Luczak ED, Wu Y, Granger JM, Joiner MA, Wilson NR, Gupta A, Umapathi P, Murphy KR, Gaido OER, Sabet A, Corradini E, Tseng W, Wang Y, Heck AJR, Wei A, Weiss RG, Anderson ME (2020) Mitochondrial CaMKII causes adverse metabolic reprogramming and dilated cardiomyopathy. Nat Comm 11:4416

    Article  CAS  Google Scholar 

  126. Shen W, Tain R, Saupe KW, Spindler M, Ingwall JS (2001) Endogenous nitric oxide enhances coupling between O2 consumption and ATP synthesis in guinea pig hearts. Am J Physiol Heart Circ Physiol 281:H838–H846

    Article  CAS  PubMed  Google Scholar 

  127. Monte FD, Williams E, Lebeche D, Schmidt U, Rosenzweig A, Gwathmey JK, Lewandowski ED, Hajjar RJ (2001) Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca2+-ATPase in a rat model of heart failure. Circulation 104:1424–1429

    Article  PubMed  PubMed Central  Google Scholar 

  128. Saupe KW, Eberli FR, Ingwall JS, Apstain CS (2001) Metabolic support as an adjunct to inotropic support in the hypoperfused heart. J Mol Cell Cardiol 33:261–269

    Article  CAS  PubMed  Google Scholar 

  129. Naumova AV, Weiss RG, Chacko VP (2003) Regulation of murine myocardial energy metabolism during adrenergic stress studied by in vivo 31P NMR spectroscopy. Am J Physiol Heart Circ Physiol 285:H1976–H1979

    Article  CAS  PubMed  Google Scholar 

  130. Maslov MY, Chacko VP, Hirsch GA, Akki A, Leppo MK, Steenbergen C, Weiss RG (2010) Reduced in vivo high-energy phosphates precede Adriamycin-induced cardiac dysfunction. Am J Physiol Heart Circ Physiol 299:H332–H337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vendelin M, Hoerter JA, Mateo P, Soboll S, Gillet B, Mazet JL (2010) Modulation of energy transfer pathways between mitochondria and myofibrils by changes in performance of perfused heart. J Biol Chem 285(48):37240–37250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hirsch GA, Bottomley PA, Gerstenblith G, Weiss RG (2012) Allopurinol acutely increases adenosine triphosphate energy delivery in failing human hearts. J Am Coll Cardiol 59:802–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Watson WD, Timm KN, Lewis AJ, Miller JJJ, Emmanuel Y, Clarke K, Neubauer S, Tyler D, Rider OJ (2020) Nicotinic acid receptor agonists impair myocardial contractility by energy starvation. FASEB J 34:14878–14891

    Article  CAS  PubMed  Google Scholar 

  134. Tian R, Musi N, D’Agostino, Hirshman MF, Goodyear LJ (2001) Increased adenosine monophosphate activated protein kinase activity in rat hearts with pressure-overload hypertrophy. Circulation 104:1664–1669

  135. Javadpour MM, Tardiff JC, Pinz I, Ingwall JS (2003) Decreased energetics in murine hearts bearing the R92Q mutation in cardiac troponin T. J Clin Invest 112:768–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Spindler M, Engelhardt S, Niebler R, Wagner H, Hein L, Lohse MJ, Neubauer S (2003) Alterations in the myocardial creatine kinase system precede the development of contractile dysfunction in the β1-adrenergic receptor transgenic mice. J Mol Cell Cardiol 35:389–397

    Article  CAS  PubMed  Google Scholar 

  137. Nascimben L, Ingwall JS, Lorell BH, Pinz I, Schultz V, Tornheim K, Tian R (2004) Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension 44:662–667

    Article  CAS  PubMed  Google Scholar 

  138. Friehs I, Cao-Danh H, Nathan M, McGowan FX, Nido PJ (2005) Impaired insulin-signaling in hypertrophied hearts contributes to ischemic injury. Biochem Biophy Res Comm 331:15–22

    Article  CAS  Google Scholar 

  139. Smith CS, Bottomley PA, Schulman SP, Gerstenblith G, Weiss RG (2006) Altered creatine kinase adenosine triphosphate kinetics in failing hypertrophied human myocardium. Circulation 114:1151–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Maslov MY, Chacko VP, Stuber M, Moens AL, Kass DA, Champion HC, Weiss RG (2007) Altered high-energy phosphate metabolism predicts contractile dysfunction and subsequent ventricular remodeling in pressure-overload hypertrophy mice. Am J Physiol Heart Circ Physiol 292:H387–H391

    Article  CAS  PubMed  Google Scholar 

  141. Pinz I, Ostroy SE, Hoyer K, Osinska H, Robbins J, Molkentin JD, Ingwall JS (2008) Calcineurin-induced energy wasting in a transgenic mouse model of heart failure. Am J Physiol Heart Circ Physiol 294:H1459–H1466

    Article  CAS  PubMed  Google Scholar 

  142. Beer M, Wagner D, Myers J, Sandstede J, Kostler H, Hahm D, Neubauer S, Dubach P (2008) Effects of exercise training on myocardial energy metabolism and ventricular function assessed by quantitative phosphorus-31 magnetic resonance spectroscopy and magnetic resonance imaging in dilated cardiomyopathy. J Am Coll Cardiol 51:1888–1891

    Article  Google Scholar 

  143. Gupta A, Chacko VP, Weiss RG (2009) Abnormal energetics and ATP depletion in pressure-overload mouse hearts: in vivo high-energy phosphate concentration measures by noninvasive magnetic resonance. Am J Physiol Heart Circ Physiol 297:H59–H64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wu F, Zhang J, Beard DA (2009) Experimentally observed phenomena on cardiac energetics in heart failure emerge from simulations of cardiac metabolism. Proc Natl Acad Sci 106:7143–7148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Phillips D, Hove MT, Schneider JE, Wu CO, Montefiore LS, Aponte AM, Lygate CA, Wallis J, Clarke K, Watkins H, Balaban RS, Neubauer S (2010) Mice over-expressing the myocardial creatine transporter develop progressive heart failure and show deceased glycolytic capacity. J Mol Cell Cardiol 48:582–590

    Article  CAS  PubMed  Google Scholar 

  146. Pinz I, Tian R, Delke D, Swanson E, Dillmann W, Ingwall JS (2011) Compromised myocardial energetics in hypertrophied mouse hearts diminish the beneficial effect of overexpressing SERCA2a. J Biol Chem 286:10163–10168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Dodd MS, Ball DR, Schroeder MA, Page LML, Atherton HJ, Heather LC, Syemour AM, Ashrafian H, Watkins H, Clarke K, Tyler DJ (2012) In vivo alterations in cardiac metabolism and function in the spontaneously hypertensive rat heart. Cardiovasc Res 95:69–76

    Article  CAS  PubMed  Google Scholar 

  148. Holloway CJ, Dass S, Suttie JJ, Rider OJ, Cox P, Cochlin LE, Jackson H, Fast AM, Johnson AW, Karamitsos TD, Neubauer S, Clarke K (2012) Exercise training in dilated cardiomyopathy improves rest and stress cardiac function without changes in cardiac high energy phosphate metabolism. Heart 98:1083–1090

    Article  CAS  PubMed  Google Scholar 

  149. He H, Hoyer K, Tao H, Rice R, Jimenez J, Tardiff JC, Ingwall JS (2012) Myosin-driven rescue of contractile reserve and energetics in mouse hearts bearing familial hypertrophic cardiomyopathy-associated mutant troponin T is mutation-specific. J Physiol 590(21):5371–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gupta A, Akki A, Wang Y, Leppo MK, Chacko VP, Foster DB, Caceres V, Shi S, Kirk JA, Su J, Lai S, Paolocci N, Steenbergen C, Gerstenblith G, Weiss RG (2012) Creatine-kinase-mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved. J Clin Invest 122:291–302

    Article  CAS  PubMed  Google Scholar 

  151. Abraham MR, Bottomley PA, Dimaano VL, Pinheiro A, Steinberg A, Traill TA, Abraham TP, Weiss RG (2013) Creatine kinase adenosine triphosphate and phosphocreatine energy supply in a single kindred of patients with hypertrophic cardiomyopathy. Am J Cardiol 112:861–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nowakowski SG, Kolwicz SC, Korte FS, Luo Z, Robinson-Hamm JN, Page JL, Brozovich F, Weiss RS, Tian R, Murry CE, Regnier M (2013) Transgenic overexpression of ribonucleotide reductase improves cardiac performance. Proc Natl Acad Sci 110:6187–6192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bottomley PA, Panjrath GS, Lai S, Hirsch GA, Wu K, Najjar SS, Steinberg A, Gerstenblith G, Weiss RG (2013) Metabolic rates of ATP transfer through creatine kinase (CK flux) predict clinical heart failure events and death. Sci Transl Med 5:215re3

  154. Xiong Q, Zhang P, Guo J, Swingen C, Jang A, Zhang J (2015) Myocardial ATP hydrolysis rates in vivo: a porcine model of pressure overload-induced hypertrophy. Am J Physiol Heart Circ Physiol 309:H450–H458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dass S, Cochlin LE, Suttie JJ, Holloway CJ, Rider OJ, Carden L, Tyler DJ, Karamitsos TD, Clarke K, Neubauer S, Watkins H (2015) Exacerbation of cardiac energetic impairment during exercise in hypertrophic cardiomyopathy: a potential mechanism for diastolic dysfunction. Eu Heart J 36:1547–1554

    Article  CAS  Google Scholar 

  156. Jameel MN, Xiong Q, Mansoor A, Bache RJ, Zhang J (2016) ATP sensitive K+ channels are critical for maintaining myocardial perfusion and high energy phosphates in the failing heart. J Mol Cell Cardiol 92:116–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Deschodt-Arsac V, Arsac L, Magat J, Naulin J, Quesson B, Santos PD (2016) Energy deregulation precedes alteration in heart energy balance in young spontaneously hypertensive rats: a non-invasive in vivo 31P MR spectroscopy follow-up study. PLoS ONE 11(9):e0162677

    Article  PubMed  PubMed Central  Google Scholar 

  158. Bakermans AJ, Bazil JN, Nederveen AJ, Strijkers GJ, Boekholdt SM, Beard DA, Jeneson JAL (2017) Human cardiac 31P MRS at 3Tesla cannot detect failing myocardial energy homeostasis during exercise. Fron Physiol 8:939

    Article  Google Scholar 

  159. Solaiyappan M, Weiss RG, Bottomley PA (2019) Neural-network classification of a cardiac disease from 31P cardiovascular magnetic resonance spectroscopy measures of creatine kinase energy metabolism. J Cardiovas Mag Reso 21:49

    Article  Google Scholar 

  160. Raman B, Ariga R, Spartera M, Sivalokanathan S, Chan K, Dass S, Petersen SE, Daniels Francis J, Smillie R, Lewandowski AJ, Ohuma EO, Rodgers C, Kramer CM, Mahmod M, Watkins H, Neubauer S (2019) Progression of myocardial fibrosis in hypertrophic cardiomyopathy: mechanisms and clinical implications. Eu heart J 20:157–167

    Google Scholar 

  161. Valkovic L, Calrke WT, Schmid AI, Raman B, Ellis J, Watkins H, Robson MD, Neubauer S, Rodgers CT (2019) Measuring inorganic phosphate and intracellular pH in the healthy and hypertrophic cardiomyopathy hearts by in vivo 7T 31P-cardiovascular magnetic resonance spectroscopy. J Cardiovas Mag Reso 21:19

    Article  Google Scholar 

  162. Cao F, Maguire ML, McAndrew DJ, Lake HA, Neubauer S, Zervou S, Schneider JE, Lygate CA (2020) Overexpression of mitochondrial creatine kinase preserves cardiac energetics without ameliorating murine chronic heart failure. Bas Res Cardio 115:12

    Article  CAS  Google Scholar 

  163. Lopez R, Marzban B, Gao X, Lauinger E, Bergh FV, Whitesall SE, Converso-Baran K, Burant CF, Michele DE, Beard DA (2020) Impaired myocardial energetics causes mechanical dysfunction in decompensated failing hearts. Function 1(2):zqaa018

  164. Keceli G, Gupta A, Sourdon J, Gabr R, Schar M, Dey S, Tocchetti CG, Stuber A, Agrimi J, Zhang Y, Leppo M, Steenbergen C, Lai S, Yanek LR, O’Rourke B, Gerstenblith G, Bottomley PA, Wang Y, Paolocci N, Weiss RG (2022) Circ Res 130:741–759

    CAS  PubMed  Google Scholar 

  165. Weiss RG, Chatham JC, Charron MJ, Georgakopolous D, Wallimann T, Kay L, Walzel B, Wang Y, Kass DA, Gerstenblith G, Chacko VP (2002) An increase in the myocardial PCr/ATP ratio in GLUT4 null mice. FASEB J 16(6):613–625

    Article  CAS  PubMed  Google Scholar 

  166. Spindler M, Niebler R, Remkes H, Horn M, Lanz T, Neubauer S (2002) Mitochondrial creatine kinase is critically necessary for normal myocardial high-energy phosphate metabolism. Am J Physiol Heart Circ Physiol 283:H680–H687

    Article  CAS  PubMed  Google Scholar 

  167. Schmidt A, Marescau B, Boehm EA, Renema WKJ, Peco R, Das A, Steinfeld R, Chan S, Wallis J, Davidoff M, Ullrich K, Waldschutz R, Heerschap A, Deyn PPD, Neubauer S, Isbrandt D (2004) Severely altered guanidine compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency. Human Mole Gene 13:905–921

    Article  CAS  Google Scholar 

  168. Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, Ahmad F, Matsui T, Chin S, Wu PH, Rybkin II, Shelton JM, Manieri M, Cinti S, Schoen F, Bassel-Duby R, Rosenzweig A, Ingwall JS (2005) Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metabol 1:259–271

    Article  CAS  Google Scholar 

  169. Zou L, Shen M, Arad M, He H, Lofgren B, Ingwall JS, Seidman CE, Seidman JG, Tian R (2005) N4881 mutation of the γ2-subunit results in bidirectional changes in AMP-activated protein kinase activity. Circ Res 97:323–328

    Article  CAS  PubMed  Google Scholar 

  170. Ahmad F, Arad M, Musi N, He H, Wolf C, Branco D, Perez-Atayde AR, Stapleton D, Bali D, Xing Y, Tian R, Goodyear LJ, Berul CI, Ingwall JS, Seidman CE, Seidman JG (2005) Increased α2 submit-associated AMPK activity and PRKAG2 cardiomyopathy. Circulation 112:3140–3148

    Article  CAS  PubMed  Google Scholar 

  171. Hove MT, Lygate CA, Fischer A, Schneider JE, Sang AE, Hulbert K, Montefiore LS, Watkins H, Clarke K, Isbrandt D, Wallis J, Neubauer S (2005) Reduced inotropic reserve and increased susceptibility to cardiac ischemia/reperfusion injury in phosphocreatine-deficient guanidinoacetate-N-methyltransferase-knockout mice. Circulation 111:2477–2485

    Article  PubMed  Google Scholar 

  172. Wallis J, Lygate CA, Fischer A, Hove MT, Schneider JE, Montefiore LS, Dawson D, Hulbert K, Zhang W, Zhang MH, Watkins H, Clarke K, Neubauer S (2005) Supranormal myocardial creatine and phosphocreatine concentrations lead to cardiac hypertrophy and heart failure. Insights from creatine transporter-overexpressing transgenic mice. Circulation 112: 3131–3139

  173. He H, Javadpour MM, Latiff F, Tardiff JC, Ingwall JS (2007) R-92L and R-92W mutations in cardiac troponin T lead to distinct energetic phenotypes in intact mouse hearts. Biophy J 93:1834–1844

    Article  CAS  Google Scholar 

  174. Hoyer K, Krenz M, Robbins J, Ingwall JS (2007) Shifts in the myosin heavy chain isozymes in the mouse heart result in increased energy efficiency. J Mol Cell Cardiol 42:214–221

    Article  CAS  PubMed  Google Scholar 

  175. Zhang W, Hove MT, Schneider JE, Stuckey DJ, Montefiore LS, Bia BL, Radda GK, Davies KE, Neubauer S, Clarke K (2008) Abnormal cardiac morphology, function and energy metabolism in the dystrophic mdx mouse: an MRI and MRS study. J Mol Cell Cardiol 45:754–760

    Article  CAS  PubMed  Google Scholar 

  176. Shen W, Vatner DE, Vatner SF, Ingwall JS (2010) Progressive loss of creatine maintains a near normal ΔG~ATP in transgenic mouse hearts with cardiomyopathy caused by overexpressing Gsα. J Mol Cell Cardiol 48:591–599

    Article  CAS  PubMed  Google Scholar 

  177. Dzerja PP, Hoyer K, Tian R, Zhang S, Nemutlu E, Spindler M, Ingwall JS (2011) Rearrangement of energetic and substrate utilization networks compensate for chronic myocardial creatine kinase deficiency. J Physiol 589(21):5193–5211

    Article  Google Scholar 

  178. Lygate CA, Aksentijevic D, Dawson D, Hone MT, Phillips D, Bono JP, Medway DJ, Montefiore LS, Hunyor I, Channon KM, Clarke K, Zervou S, Watkins H, Balaban RS, Neubauer S (2013) Living without creatine. Unchanged exercise capacity and response to chronic myocardial infarction in creatine-deficient mice. Circ Res 112:945–955

  179. Faller KME, Atzler D, McAndrew DJ, Zervou S, Whittington HJ, Simon JN, Aksentijevic D, Hove MT, Choe C, Isbrandt D, Casadei B, Schneider JE, Neubauer S, Lygate CA (2018) Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine. Cardiovas Res 114:417–430

    Article  CAS  Google Scholar 

  180. Aksentijevic D, Zervou S, Eykyn TR, McAndrew DJ, Wallis J, Eschneider JE, Neubauer S, Lygate CA (2020) Age-dependent decline in cardiac function in guanidinoacetate-N-methyltransferase knockout mice. Front Physiol 10:1535

    Article  PubMed  PubMed Central  Google Scholar 

  181. Freestone MS, Madsen PL, Manners D, Blamire AM, Buckingham RE, Styles P, Radda GK, Neubauer S, Clarke K (2003) Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 108:3040–3046

    Article  Google Scholar 

  182. Desrois M, Clarke K, Lan C, Dalmasso C, Cole M, Portha B, Cozzone PJ, Bernard M (2010) Upregulation of eNOS and unchanged energy metabolism in increased susceptibility of the aging type 2 diabetic GK rat heart to ischemic injury. Am J Physiol Heart Circ Physiol 299:H1679–H1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Liang Z, Leo S, Wen H, Ouyang M, Jiang W, Yang K (2015) Triptolide improves systolic function and myocardial energy metabolism of diabetic cardiomyopathy in streptozotacin-induced diabetic rats. BMC Cardiovas Disor 15:42

    Article  CAS  Google Scholar 

  184. Bashir A, Coggan AR, Gropler RJ (2015) In vivo creatine kinase reaction kinetics at rest and stress in type II diabetic rat heart. Physiol Rep 3(1):e12248

    Article  PubMed  PubMed Central  Google Scholar 

  185. Levelt E, Rodgers CT, Clarke WT, Mahmod M, Ariga R, Francis JM, Liu A, Wijesurendra RS, Dass S, Sabharwal N, Robson MD, Holloway CJ, Rider OJ, Clarke K, Karamitsos TD, Neubauer S (2016) Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 diabetes mellitus. Eu Heart J 37:3461–3469

    Article  Google Scholar 

  186. Fourny N, Lan C, Seree E, Bernard M, Desrois M (2019) Protective effect of resveratrol against ischemia-reperfusion injury via enhanced high energy compounds and eNOS-SIRT1 expression in type 2 diabetic female rat heart. Nutrients 11:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kerr M, Miller JJ, Thapa D, Stiewe S, Timm KN, Aparicio CNM, Scott IS, Tyler DJ, Heather LC (2020) Rescue of myocardial energetic dysfunction in diabetes through the correction of mitochondrial hyperacetylation by honokiol. JCI Insight 5(17):e140326

    Article  PubMed  PubMed Central  Google Scholar 

  188. Gaborit B, Ancel P, Abdullah AE, Maurice F, Abdesselam I, Calen A, Soghomonian A, Houssays M, Varlet I, Eisinger M, Lasbleiz A, Peiretti F, Bornet CE, Lefur Y, Pini L, Rapacchi S, Bernard M, Resseguier N, Darmon P, Kober F, Dutour A (2021) effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study. Cardiovasc Diabetol 20:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Rider OJ, Francis JM, Ali MK, Holloway C, Pegg T, Robson MD, Tyler D, Byrne J, Clarke K, Neubauer S (2012) Effects of catecholamine stress on diastolic function and myocardial energetics in obesity. Circulation 125:1511–1519

    Article  CAS  PubMed  Google Scholar 

  190. Luptak I, Sverdlov AL, Panagia M, Qin F, Pimentel DR, Croteau D, Siwik DA, Ingwall JS, Bachschmid MM, Balschi JA, Colucci WS (2018) Decreased ATP production and myocardial contractile reserve in metabolic heart disease. J Mol Cell Cardiol 116:106–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Rayner JJ, Peterzan MA, Watson WD, Clarke WT, Neubauer S, Rodgers CT, Rider OJ (2020) Myocardial energetics in obesity: enhanced ATP delivery through creatine kinase with blunted stress response. Circulation 141:1152–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Esterhammer R, Klug G, Wolf C, Mayr A, Reinstadler S, Feistritzer HJ, Metzler B, Schocke MFH (2014) Cardiac high-energy phosphate metabolism alters with age as studied in 196 healthy males with the help of 31Phosphorus 2D CSI. PLoS ONE 9(6):e97368

    Article  PubMed  PubMed Central  Google Scholar 

  193. Nathania M, Hollingsworth KG, Bates M, Eggett C, Trenell MI, Velicki L, Seferovic PM, MacGowan GA, Turnbull DM, Jakovljevic DG (2018) Impact of age on the association between cardiac high-energy phosphate metabolism and cardiac power in women. Heart 104:111–118

    Article  CAS  PubMed  Google Scholar 

  194. Whitson JA, Bitto A, Zhang H, Sweetwyne MT, Coig R, Bhayana S, Shankland EG, Wang L, Bammler TK, Mills KF, Imai S, Conley KE, Marcinek DJ (2020) SS-31 and NMN: two paths to improve metabolism and function in aged hearts. Aging Cell 19:e13213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Gupta A, Rohlfsen C, Leppo MK, Chacko VP, Wang Y, Steenbergen C, Weiss RG (2013) Creatine kinase-overexpression improves myocardial energetics, contractile dysfunction and survival in murine doxorubicin cardiotoxicity. PLoS ONE 8(10):e74675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Leme AMBP, Salemi VMC, Parga JR, Lanni BM, Mady C, Weiss RG, Filho RK (2010) Evaluation of the metabolism of high energy phosphates in patients with chagas’ disease. Arq Bras Cardiol 95(2):264–271

    Article  CAS  PubMed  Google Scholar 

  197. Leme AMBP, Salemi VMC, Weiss RG, Parga JR, Ianni BM, Mady C, Filho RK (2013) Exercise-induced decrease in myocardial high energy phosphate metabolites in patients with chagas heart disease. J Cardiac Fail 19:454–460

    Article  Google Scholar 

  198. Machann W, Breunig F, Weidemann F, Sandstede J, Hahn D, Kostler H, Neubauer S, Wanner C, Beer M (2011) Cardiac energy metabolism is disturbed in fabry disease and improves with enzyme replacement therapy using recombinant human galactosidase A. Eu J heart Fail 13:278–283

    Article  CAS  Google Scholar 

  199. Beer M, Seyfarth T, Sandstede J, Landschutz W, Lipke C, Kostler H, Kienlin MV, Harre K, Hahn D, Neubauer S (2002) Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with 31P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol 40:1267–1274

    Article  CAS  PubMed  Google Scholar 

  200. Bottomley PA, Ouwerkerk R, Lee RF, Weiss RG (2002) Four-angle saturation transfer (FST) method for measuring creatine kinase reaction rates in vivo. Mag Reso Med 47:850–863

    Article  CAS  Google Scholar 

  201. Weiss RG, Gerstenblith G, Bottomley PA (2005) ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci 102:808–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Gabr RE, Ouwerkerk R, Bottomley PA (2006) Quantifying in vivo MR spectra with circles. J Mag Reso 179:152–163

    Article  CAS  Google Scholar 

  203. Gabr RE, Weiss RG, Bottomley PA (2008) Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy. J Mag Reso 191:248–258

    Article  CAS  Google Scholar 

  204. Tyler DJ, Hudsmith LE, Clarke K, Neubauer S, Robson MD (2008) A comparison of cardiac 31P MRS at 1.5T and 3T. NMR Biomed 21:793–798

  205. Xiong Q, Li Q, Mansoor A, Jameel MN, Du F, Chen W, Zhang J (2009) Novel strategy for measuring creatine kinase reaction rate in the in vivo heart. Am J Physiol Heart Circ Physiol 297:H1010–H1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. El-Sharkawy AM, Schar M, Ouwerkerk R, Weiss RG, Bottomley PA (2009) Quantitative cardiac 31P spectroscopy at 3 Tesla using adiabatic pulses. Mag Reso Med 61:785–795

    Article  CAS  Google Scholar 

  207. Schar M, El-Sharkawy AM, Weiss RG, Bottomley PA (2010) Triple repetition time saturation transfer (TRiST) 31P spectroscopy for measuring human creatine kinase reaction kinetics. Mag Reso Med 63:1493–1501

    Article  CAS  Google Scholar 

  208. Gupta A, Chacko VP, Schar M, Akki A, Weiss RG (2011) Impaired ATP kinetics in failing in vivo mouse heart. Circ Cardiovasc Imaging 4:42–50

    Article  CAS  PubMed  Google Scholar 

  209. Xiong Q, Du F, Zhu X, Zhang P, Suntharalingam P, Ippolito J, Kamdar FD, Chen W, Zhang J (2011) ATP production rate via CK or ATP synthesis in vivo: a novel superfast magnetization saturation transfer method. Circ Res 108(6):653–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. El-Sharkawy AM, Gabr RE, Schar M, Weiss RG, Bottomley PA (2013) Quantification of human high-energy phosphate metabolite concentrations at 3T with partial volume and sensitivity corrections. NMR Biomed 26:1363–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Rodgers CT, Clarke WT, Snyder C, Vaughan JT, Neubauer S, Robson MD (2014) Human cardiac 31P magnetic resonance spectroscopy at 7 Tesla. Mag Reso Med 72:304–315

    Article  CAS  Google Scholar 

  212. Schar M, Gabr RE, El-Sharkawy AM, Steinberg A, Bottomley PA, Weiss RG (2015) Two repetition time saturation transfer (TwiST) with spill-over correction to measure creatine kinase reaction rates in human hearts. J Cardiovas Mag Reso 17:70

    Article  Google Scholar 

  213. Bakermans AJ, Abdurrachim D, Nierop BJ, Koeman A, Kroon IVD, Baartscheer A, Schumacher CA, Strijkers GJ, Houten SM, Zuurbier CJ, Nicolay K, Prompers JJ (2015) In vivo mouse myocardial 31P MRS using three-dimensional image-selected in vivo spectroscopy (3D ISIS): technical considerations and biochemical validations. NMR Biomed 28:1218–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Weiss K, Bottomley PA, Weiss RG (2015) On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo 31P MRS. NMR Biomed 28:694–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Clarke WT, Robson MD, Rodgers CT (2016) Bloch-Siegert B1+-mapping for human cardiac 31P-MRS at 7 Tesla. Magn Reson Med 76:1047–1058

    Article  CAS  PubMed  Google Scholar 

  216. Jang A, Xiong Q, Zhang P, Zhang J (2016) Transmurally differentiated measurement of ATP hydrolysis rates in the in vivo porcine hearts. Magn Reson Med 75:1859–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Stoll VM, Clarke WT, Levelt E, Liu A, Myerson SG, Robson MD, Neubauer S, Rodgers CT (2016) Dilated cardiomyopathy: phosphorus-31 MR spectroscopy at 7T. Radiology 281:409–417

    Article  PubMed  Google Scholar 

  218. Schaller B, Clarke WT, Neubauer S, Robson MD, Rodgers CT (2016) Suppression of skeletal muscle signal using a crusher coil: a human cardiac 31P-MR spectroscopy study at 7 Tesla. Magn Reson Med 75:962–972

    Article  CAS  PubMed  Google Scholar 

  219. Valkovic L, Clarke WT, Purvis LAB, Schaller B, Robson MD, Rodgers CT (2017) Adiabatic excitation for 31P MR spectroscopy in the human heart at 7 T: a feasibility study. Magn Reson Med 78:1667–1673

    Article  CAS  PubMed  Google Scholar 

  220. Clarke WT, Robson MD, Neubauer S, Rodgers CT (2017) Creatine kinase rate constant in the human heart measured with 3D-localization at 7 Tesla. Magn Reson Med 78:20–32

    Article  CAS  PubMed  Google Scholar 

  221. Valkovic L, Dragonu I, Almujayyaz S, Batzakis A, Young LAJ, Purvis LAB, Clarke WT, Wichmann T, Lanz T, Neubauer S, Robson MD, Klomp DWJ, Rodgers CT (2017) Using a whole-body 31P birdcage transmit coil and 16-element receive array for human cardiac metabolic imaging at 7T. PLoS ONE 12(10):e0187153

    Article  PubMed  PubMed Central  Google Scholar 

  222. Ellis J, Valkovic L, Purvis LAB, Clarke WT, Rodgers CT (2019) Reproducibility of human cardiac phosphorus MRS (31P-MRS) at 7T. NMR Biomed 32:e4095

    Article  PubMed  PubMed Central  Google Scholar 

  223. Clarke WT, Peterzan MA, Rayner JJ, Sayeed RA, Petrou M, Krasopoulos G, Lake HA, Raman B, Watson WD, Cox P, Hundertmark MJ, Apps AP, Lygate CA, Neubauer S, Rider OJ, Rodgers CT (2019) Localized rest and stress human cardiac creatine kinase reaction kinetics at 3T. NMR Biomed 32:e4085

  224. Miller JJ, Valkovic L, Kerr M, Timm KN, Watson WD, Lau JYC, Tyler A, Rodgers C, Bottomley PA, Heather LC, Tyler DJ (2021) Rapid, B1-insensitive, dual-band quasi-adiabatic saturation transfer with optimal control for completequantification of myocardial ATP flux. Magn Reson Med 85:2978–2991

  225. Apps A, Valkovic L, Peterzan M, Lau JYC, Hundertmark M, Clarke W, Tunnicliffe EM, Ellis J, Tyler DJ, Neubauer S, Rider OJ, Rodgers CT, Schmid AI (2021) Quantifying the effect of dobutamine stress on myocardial Pi and pH in healthy volunteers: a 31P MRS study at 7T. Magn Reson Med 85:1147–1159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.G. researched data for the article, wrote the manuscript, reviewed, and edited it before submission.

Corresponding author

Correspondence to Ashish Gupta.

Ethics declarations

Ethics approval and consent to participate

Not applicable to this article as no datasets were generated or analyzed during the current study.

Consent for publication

Not applicable to this article as no datasets were generated or analyzed during the current study.

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A. Cardiac 31P MR spectroscopy: development of the past five decades and future vision—will it be of diagnostic use in clinics?. Heart Fail Rev 28, 485–532 (2023). https://doi.org/10.1007/s10741-022-10287-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-022-10287-x

Keywords

Navigation