Skip to main content
Log in

Atrial fibrillation-induced tachycardiomyopathy and heart failure: an underappreciated and elusive condition

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Many patients with persistent, chronic, or frequently recurring paroxysmal atrial fibrillation (AF) may develop a tachycardiomyopathy (TCM) with left ventricular (LV) dysfunction and heart failure (HF), which is reversible upon restoration and maintenance of sinus rhythm, when feasible, or via better and tighter ventricular rate (VR) control. Mechanisms involved in producing this leading cause of TCM (AF-TCM) include loss of atrial contraction, irregular heart rate, fast VR, neurohumoral activation, and structural myocardial changes. The most important of all mechanisms relates to optimal VR control, which seems to be an elusive target. Uncontrolled AF may also worsen preexisting LV dysfunction and exacerbate HF symptoms. Data, albeit less robust, also point to deleterious effects of slow VRs on LV function. Thus, a J-shaped relationship between VR and clinical outcome has been suggested, with the optimal VR control hovering at ~ 65 bpm, ranging between 60 and 80 bpm; VRs above and below this range may confer higher morbidity and mortality rates. A convergence of recent guidelines is noted towards a stricter rather than a more lenient VR control with target heart rate < 80 bpm at rest and < 110 bpm during moderate exercise which seems to prevent TCM or improve LV function and exercise capacity and relieve TCM-related symptoms and signs. Of course, restoring and maintaining sinus rhythm is always a most desirable target, when feasible, either with drugs or more likely with ablation. All these issues are herein reviewed, current guidelines are discussed and relevant data are tabulated and pictorially illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No new data were generated or analyzed in support of this research.

Abbreviations

AF:

Atrial fibrillation

AF-TCM:

Atrial fibrillation-induced tachycardiomyopathy

AV:

Atrioventricular

CAD:

Coronary artery disease

CCB:

Calcium channel blocker

CM:

Cardiomyopathy

CMR:

Cardiac magnetic resonance imaging

CRT:

Cardiac resynchronization therapy

CRT-D:

CRT-defibrillator

CV:

Cardiovascular

DCM:

Dilated cardiomyopathy

HF:

Heart failure

HFpEF:

Heart failure with preserved ejection fraction

HFrEF:

Heart failure with reduced ejection fraction

ICD:

Implantable cardioverter defibrillator

LV:

Left ventricular

LVEF:

Left ventricular ejection fraction

NYHA:

New York Heart Association

PVI:

Pulmonary vein isolation

RCT:

Randomized controlled trial

SVT:

Supraventricular tachycardia

TCM:

Tachycardiomyopathy

VR:

Ventricular rate

References

  1. Qin D, Mansour MC, Ruskin JN et al (2019) Atrial fibrillation-mediated cardiomyopathy. Circ Arrhythm Electrophysiol 12:e007809

  2. Calvo N, Bisbal F, Guiu E et al (2013) Impact of atrial fibrillation-induced tachycardiomyopathy in patients undergoing pulmonary vein isolation. Int J Cardiol 168:4093–4097

    Article  PubMed  Google Scholar 

  3. Gopinathannair R, Etheridge SP, Marchlinski FE et al (2015) Arrhythmia-induced cardiomyopathies: mechanisms, recognition, and management. J Am Coll Cardiol 66:1714–1728

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gopinathannair R, Dhawan R, Lakkireddy DR et al (2021) Predictors of myocardial recovery in arrhythmia-induced cardiomyopathy: a multicenter study. J Cardiovasc Electrophysiol 32:1085–1092

    Article  PubMed  Google Scholar 

  5. Sugumar H, Nanayakkara S, Prabhu S et al (2019) Pathophysiology of atrial fibrillation and heart failure: dangerous interactions. Cardiol Clin 37:131–138

    Article  PubMed  Google Scholar 

  6. Balasubramaniam R, Kistler PM (2009) Atrial fibrillation in heart failure: the chicken or the egg? Heart 95:535–539

    Article  CAS  PubMed  Google Scholar 

  7. Virani SS, Alonso A, Aparicio HJ et al (2021) Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation 143:e254–e743

    Article  PubMed  Google Scholar 

  8. Wang TJ, Larson MG, Levy D et al (2003) Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham Heart Study. Circulation 107:2920–2925

    Article  PubMed  Google Scholar 

  9. Chamberlain AM, Gersh BJ, Alonso A et al (2017) No decline in the risk of heart failure after incident atrial fibrillation: a community study assessing trends overall and by ejection fraction. Heart Rhythm 14:791–798

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vermond RA, Geelhoed B, Verweij N et al (2015) Incidence of atrial fibrillation and relationship with cardiovascular events, heart failure, and mortality: a community-based study from the Netherlands. J Am Coll Cardiol 66:1000–1007

    Article  PubMed  Google Scholar 

  11. Nicoli CD, O'Neal WT, Levitan EB et al (2022) Atrial fibrillation and risk of incident heart failure with reduced versus preserved ejection fraction. Heart 108(5):353-359

  12. Ruddox V, Sandven I, Munkhaugen J et al (2017) Atrial fibrillation and the risk for myocardial infarction, all-cause mortality and heart failure: a systematic review and meta-analysis. Eur J Prev Cardiol 24:1555–1566

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stronati G, Guerra F, Urbinati A et al (2019) Tachycardiomyopathy in patients without underlying structural heart disease. J Clin Med 8:1411

    Article  CAS  PubMed Central  Google Scholar 

  14. Verhaert DVM, Brunner-La Rocca HP, van Veldhuisen DJ et al (2021) The bidirectional interaction between atrial fibrillation and heart failure: consequences for the management of both diseases. Europace 23:ii40-ii45.

  15. Shinbane JS, Wood MA, Jensen DN et al (1997) Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J Am Coll Cardiol 29:709–715

    Article  CAS  PubMed  Google Scholar 

  16. Fenelon G, Wijns W, Andries E et al (1996) Tachycardiomyopathy: mechanisms and clinical implications. Pacing Clin Electrophysiol 19:95–106

    Article  CAS  PubMed  Google Scholar 

  17. Cha YM, Redfield MM, Shen WK et al (2004) Atrial fibrillation and ventricular dysfunction: a vicious electromechanical cycle. Circulation 109:2839–2843

    Article  PubMed  Google Scholar 

  18. Guichard JB, Xiong F, Qi XY et al (2021) Role of atrial arrhythmia and ventricular response in atrial fibrillation induced atrial remodelling. Cardiovasc Res 117:462–471

    Article  CAS  PubMed  Google Scholar 

  19. Grogan M, Smith HC, Gersh BJ et al (1992) Left ventricular dysfunction due to atrial fibrillation in patients initially believed to have idiopathic dilated cardiomyopathy. Am J Cardiol 69:1570–1573

    Article  CAS  PubMed  Google Scholar 

  20. Boriani G, Gasparini M, Landolina M et al (2011) Incidence and clinical relevance of uncontrolled ventricular rate during atrial fibrillation in heart failure patients treated with cardiac resynchronization therapy. Eur J Heart Fail 13:868–876

    Article  PubMed  Google Scholar 

  21. Hindricks G, Potpara T, Dagres N et al (2021) 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 42:373–498

    Article  PubMed  Google Scholar 

  22. Spahic A, Chen TH, Geller JC et al (2020) Life in the fast lane: clinical and immunohistological characteristics of tachycardia-induced cardiomyopathy-a retrospective study in 684 patients. Herzschrittmacherther Elektrophysiol 31:292–300

    Article  PubMed  Google Scholar 

  23. Anter E, Jessup M, Callans DJ (2009) Atrial fibrillation and heart failure: treatment considerations for a dual epidemic. Circulation 119:2516–2525

    Article  PubMed  Google Scholar 

  24. Khan MN, Jaïs P, Cummings J et al (2008) Pulmonary-vein isolation for atrial fibrillation in patients with heart failure. N Engl J Med 359:1778–1785

    Article  CAS  PubMed  Google Scholar 

  25. Daoud EG, Weiss R, Bahu M et al (1996) Effect of an irregular ventricular rhythm on cardiac output. Am J Cardiol 78:1433–1436

    Article  CAS  PubMed  Google Scholar 

  26. Clark DM, Plumb VJ, Epstein AE et al (1997) Hemodynamic effects of an irregular sequence of ventricular cycle lengths during atrial fibrillation. J Am Coll Cardiol 30:1039–1045

    Article  CAS  PubMed  Google Scholar 

  27. Ling LH, Khammy O, Byrne M et al (2012) Irregular rhythm adversely influences calcium handling in ventricular myocardium: implications for the interaction between heart failure and atrial fibrillation. Circ Heart Fail 5:786–793

    Article  CAS  PubMed  Google Scholar 

  28. Gosselink AT, Blanksma PK, Crijns HJ et al (1995) Left ventricular beat-to-beat performance in atrial fibrillation: contribution of Frank-Starling mechanism after short rather than long RR intervals. J Am Coll Cardiol 26:1516–1521

    Article  CAS  PubMed  Google Scholar 

  29. Gallagher JJ (1985) Tachycardia and cardiomyopathy: the chicken-egg dilemma revisited. J Am Coll Cardiol 6:1172–1173

    Article  CAS  PubMed  Google Scholar 

  30. Packer DL, Bardy GH, Worley SJ et al (1986) Tachycardia-induced cardiomyopathy: a reversible form of left ventricular dysfunction. Am J Cardiol 57:563–570

    Article  CAS  PubMed  Google Scholar 

  31. Cruz FE, Cheriex EC, Smeets JL et al (1990) Reversibility of tachycardia-induced cardiomyopathy after cure of incessant supraventricular tachycardia. J Am Coll Cardiol 16:739–744

    Article  CAS  PubMed  Google Scholar 

  32. Chiladakis JA, Vassilikos VP, Maounis TN et al (1997) Successful radiofrequency catheter ablation of automatic atrial tachycardia with regression of the cardiomyopathy picture. Pacing Clin Electrophysiol 20:953–959

    Article  CAS  PubMed  Google Scholar 

  33. Manolis AS, Lazaridis K (2019) Focal atrial tachycardia ablation: highly successful with conventional mapping [Article]. J Interv Card Electrophysiol 55:35–46

    Article  PubMed  Google Scholar 

  34. Phillips E, Levine SA (1949) Auricular fibrillation without other evidence of heart disease; a cause of reversible heart failure. Am J Med 7:478–489

    Article  CAS  PubMed  Google Scholar 

  35. Hess PL, Sheng S, Matsouaka R et al (2020) Strict versus lenient versus poor rate control among patients with atrial fibrillation and heart failure (from the Get With The Guidelines - Heart Failure Program). Am J Cardiol 125:894–900

    Article  PubMed  Google Scholar 

  36. Ziegler PD, Koehler JL, Verma A (2012) Continuous versus intermittent monitoring of ventricular rate in patients with permanent atrial fibrillation. Pacing Clin Electrophysiol 35:598–604

    Article  PubMed  Google Scholar 

  37. Sarkar S, Koehler J, Crossley GH et al (2012) Burden of atrial fibrillation and poor rate control detected by continuous monitoring and the risk for heart failure hospitalization. Am Heart J 164:616–624

    Article  PubMed  Google Scholar 

  38. Tian H, Li Y, Zhang J et al (2021) The effect of controlling the heart rate on the heart failure index and on heart function in heart failure patients with atrial fibrillation. Am J Transl Res 13:3487–3493

    PubMed  PubMed Central  Google Scholar 

  39. Van Gelder IC, Groenveld HF, Crijns HJ et al (2010) Lenient versus strict rate control in patients with atrial fibrillation. N Engl J Med 362:1363–1373

    Article  PubMed  Google Scholar 

  40. Mulder BA, Van Veldhuisen DJ, Crijns HJ et al (2013) Lenient vs. strict rate control in patients with atrial fibrillation and heart failure: a post-hoc analysis of the RACE II study. Eur J Heart Fail 15:1311–1318

  41. Van Gelder IC, Wyse DG, Chandler ML et al (2006) Does intensity of rate-control influence outcome in atrial fibrillation? An analysis of pooled data from the RACE and AFFIRM studies. Europace 8:935–942

    Article  PubMed  Google Scholar 

  42. Feinberg JB, Olsen MH, Brandes A et al (2021) Lenient rate control versus strict rate control for atrial fibrillation: a protocol for the Danish Atrial Fibrillation (DanAF) randomised clinical trial. BMJ Open 11:e044744

  43. Anselmino M, Scarsoglio S, Camporeale C et al (2015) Rate control management of atrial fibrillation: may a mathematical model suggest an ideal heart rate? PLoS One 10:e0119868

  44. Prabhu S, Taylor AJ, Costello BT et al (2017) Catheter ablation versus medical rate control in atrial fibrillation and systolic dysfunction: the CAMERA-MRI study. J Am Coll Cardiol 70:1949–1961

    Article  PubMed  Google Scholar 

  45. Ebbesen MN, D'Souza M, Andersson C et al (2021) Rate of heart failure following atrial fibrillation according to presence of family history of dilated cardiomyopathy or heart failure: a nationwide study. J Am Heart Assoc 10:e021286

  46. Yoneda ZT, Anderson KC, Quintana JA et al (2021) Early-onset atrial fibrillation and the prevalence of rare variants in cardiomyopathy and arrhythmia genes. JAMA Cardiol 6(12):1371-1379

  47. Santhanakrishnan R, Wang N, Larson MG et al (2016) Atrial fibrillation begets heart failure and vice versa: temporal associations and differences in preserved versus reduced ejection fraction. Circulation 133:484–492

    Article  PubMed  PubMed Central  Google Scholar 

  48. Alboni P, Brignole M, Menozzi C et al (1999) Is sinus bradycardia a factor facilitating overt heart failure? Eur Heart J 20:252–255

    Article  CAS  PubMed  Google Scholar 

  49. Caliskan K, Balk AH, Jordaens L et al (2010) Bradycardiomyopathy: the case for a causative relationship between severe sinus bradycardia and heart failure. J Cardiovasc Electrophysiol 21:822–824

    PubMed  Google Scholar 

  50. Alboni P, Menozzi C, Brignole M et al (1997) Effects of permanent pacemaker and oral theophylline in sick sinus syndrome the THEOPACE study: a randomized controlled trial. Circulation 96:260–266

    Article  CAS  PubMed  Google Scholar 

  51. Hwang JK, Gwag HB, Park KM et al (2019) Outcomes of cardiac resynchronization therapy in patients with atrial fibrillation accompanied by slow ventricular response. PLoS One 14:e0210603

  52. Steinberg BA, Kim S, Thomas L et al (2015) Increased heart rate is associated with higher mortality in patients with atrial fibrillation (AF): results from the outcomes registry for better informed treatment of AF (ORBIT-AF). J Am Heart Assoc 2015;4(9):e002031. https://doi.org/101161/JAHA1150020312015;4

  53. Mabo P, Pouillot C, Kermarrec A et al (1991) Lack of physiological adaptation of the atrioventricular interval to heart rate in patients chronically paced in the AAIR mode. Pacing Clin Electrophysiol 14:2133–2142

    Article  CAS  PubMed  Google Scholar 

  54. Gwinn N, Leman R, Kratz J et al (1992) Chronotropic incompetence: a common and progressive finding in pacemaker patients. Am Heart J 123:1216–1219

    Article  CAS  PubMed  Google Scholar 

  55. Pollak A, Falk RH (1993) Pacemaker therapy in patients with atrial fibrillation. Am Heart J 125:824–830

    Article  CAS  PubMed  Google Scholar 

  56. Corbelli R, Masterson M, Wilkoff BL (1990) Chronotropic response to exercise in patients with atrial fibrillation. Pacing Clin Electrophysiol 13:179–187

    Article  CAS  PubMed  Google Scholar 

  57. Magrì D, Corrà U, Di Lenarda A et al (2014) Cardiovascular mortality and chronotropic incompetence in systolic heart failure: the importance of a reappraisal of current cut-off criteria. Eur J Heart Fail 16:201–209

    Article  PubMed  Google Scholar 

  58. Santos M, West E, Skali H et al (2018) Resting heart rate and chronotropic response to exercise: prognostic implications in heart failure across the left ventricular ejection fraction spectrum. J Card Fail 24:753–762

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lukl J, Doupal V, Sovová E et al (1999) Incidence and significance of chronotropic incompetence in patients with indications for primary pacemaker implantation or pacemaker replacement. Pacing Clin Electrophysiol 22:1284–1291

    Article  CAS  PubMed  Google Scholar 

  60. Sims DB, Mignatti A, Colombo PC et al (2011) Rate responsive pacing using cardiac resynchronization therapy in patients with chronotropic incompetence and chronic heart failure. Europace 13:1459–1463

    Article  PubMed  Google Scholar 

  61. Linde C (2021) Pace and ablate better than drugs in patients with heart failure and atrial fibrillation: lessons from the APAF-CRT mortality trial. Eur Heart J 42:4740–4742

    Article  PubMed  Google Scholar 

  62. Marrouche NF, Brachmann J, Andresen D et al (2018) Catheter ablation for atrial fibrillation with heart failure. N Engl J Med 378:417–427

    Article  PubMed  Google Scholar 

  63. Buckley BJR, Harrison SL, Gupta D et al (2021) Atrial fibrillation in patients with cardiomyopathy: prevalence and clinical outcomes from real-world data. J Am Heart Assoc 7;10(23):e021970

  64. Cottin Y, Maalem Ben Messaoud B, Monin A et al (2021) Temporal relationship between atrial fibrillation and heart failure development analysis from a nationwide database. J Clin Med 10(21):5101

  65. Martin CA, Lambiase PD (2017) Pathophysiology, diagnosis and treatment of tachycardiomyopathy. Heart 103:1543–1552

    Article  PubMed  Google Scholar 

  66. Nerheim P, Birger-Botkin S, Piracha L et al (2004) Heart failure and sudden death in patients with tachycardia-induced cardiomyopathy and recurrent tachycardia. Circulation 110:247–252

    Article  PubMed  Google Scholar 

  67. Singh BN (2003) Ventricular rate control in atrial fibrillation: what is the optimal rate? The concept of controlling the heart rate burden. J Cardiovasc Pharmacol Ther 8:1–3

    Article  PubMed  Google Scholar 

  68. Farshi R, Kistner D, Sarma JS et al (1999) Ventricular rate control in chronic atrial fibrillation during daily activity and programmed exercise: a crossover open-label study of five drug regimens. J Am Coll Cardiol 33:304–310

    Article  CAS  PubMed  Google Scholar 

  69. Cheung CC, Nattel S, Macle L et al (2021) Management of atrial fibrillation in 2021: an updated comparison of the current CCS/CHRS, ESC, and AHA/ACC/HRS guidelines. Can J Cardiol 37(10):1607-1618

  70. Hirschy R, Ackerbauer KA, Peksa GD et al (2019) Metoprolol vs. diltiazem in the acute management of atrial fibrillation in patients with heart failure with reduced ejection fraction. Am J Emerg Med 37:80–84

  71. Böhm M, Schwinger RH, Erdmann E (1990) Different cardiodepressant potency of various calcium antagonists in human myocardium. Am J Cardiol 65:1039–1041

    Article  PubMed  Google Scholar 

  72. Manolis AS, Melita H (2015) The end of the digoxin era? Rhythmos 10:75–79

    Google Scholar 

  73. Camm AJ, Savelieva I, Lip GY (2007) Rate control in the medical management of atrial fibrillation. Heart 93:35–38

    Article  CAS  PubMed  Google Scholar 

  74. Van Gelder IC, Rienstra M, Crijns HJ et al (2016) Rate control in atrial fibrillation. Lancet 388:818–828

    Article  PubMed  Google Scholar 

  75. Ulimoen SR, Enger S, Carlson J et al (2013) Comparison of four single-drug regimens on ventricular rate and arrhythmia-related symptoms in patients with permanent atrial fibrillation. Am J Cardiol 111:225–230

    Article  CAS  PubMed  Google Scholar 

  76. Ulimoen SR, Enger S, Pripp AH et al (2014) Calcium channel blockers improve exercise capacity and reduce N-terminal Pro-B-type natriuretic peptide levels compared with beta-blockers in patients with permanent atrial fibrillation. Eur Heart J 35:517–524

    Article  CAS  PubMed  Google Scholar 

  77. Field ME, Holmes DN, Page RL et al (2021) Guideline-concordant antiarrhythmic drug use in the get with the guidelines-atrial fibrillation registry. Circ Arrhythm Electrophysiol 14:e008961

  78. MacDonald MR, Connelly DT, Hawkins NM et al (2011) Radiofrequency ablation for persistent atrial fibrillation in patients with advanced heart failure and severe left ventricular systolic dysfunction: a randomised controlled trial. Heart 97:740–747

    Article  PubMed  Google Scholar 

  79. Jones DG, Haldar SK, Hussain W et al (2013) A randomized trial to assess catheter ablation versus rate control in the management of persistent atrial fibrillation in heart failure. J Am Coll Cardiol 61:1894–1903

    Article  PubMed  Google Scholar 

  80. Hunter RJ, Berriman TJ, Diab I et al (2014) A randomized controlled trial of catheter ablation versus medical treatment of atrial fibrillation in heart failure (the CAMTAF trial). Circ Arrhythm Electrophysiol 7:31–38

    Article  CAS  PubMed  Google Scholar 

  81. Di Biase L, Mohanty P, Mohanty S et al (2016) Ablation versus amiodarone for treatment of persistent atrial fibrillation in patients with congestive heart failure and an implanted device: results from the AATAC multicenter randomized trial. Circulation 133:1637–1644

    Article  PubMed  Google Scholar 

  82. Kuck KH, Merkely B, Zahn R et al (2019) Catheter ablation versus best medical therapy in patients with persistent atrial fibrillation and congestive heart failure: the randomized AMICA trial. Circ Arrhythm Electrophysiol 12:e007731

  83. Packer DL, Piccini JP, Monahan KH et al (2021) Ablation versus drug therapy for atrial fibrillation in heart failure: results from the CABANA trial. Circulation 143:1377–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hsu LF, Jaïs P, Sanders P et al (2004) Catheter ablation for atrial fibrillation in congestive heart failure. N Engl J Med 351:2373–2383

    Article  CAS  PubMed  Google Scholar 

  85. Yamashita S, Tokuda M, Matsuo S et al (2019) Comparison of atrial arrhythmia recurrence after persistent atrial fibrillation ablation between patients with or without tachycardia-induced cardiomyopathy. J Cardiovasc Electrophysiol 30:2310–2318

    Article  PubMed  Google Scholar 

  86. Volle K, Delmas C, Rollin A et al (2021) Successful reversal of severe tachycardia-induced cardiomyopathy with cardiogenic shock by urgent rhythm or rate control: only rhythm and rate matter. J Clin Med 10:4504

    Article  PubMed  PubMed Central  Google Scholar 

  87. Fujimoto H, Doi N, Okayama S et al (2021) Long-term prognosis of patients undergoing radiofrequency catheter ablation for atrial fibrillation: comparison between heart failure subtypes based on left ventricular ejection fraction. Europace euab201. https://doi.org/10.1093/europace/euab201. Online ahead of print

  88. El Hajjar AH, Marrouche N (2021) The need to refine selection criteria for catheter ablation in heart failure patients with atrial fibrillation. Europace euab239. https://doi.org/10.1093/europace/euab239. Online ahead of print

  89. Ruzieh M, Foy AJ, Aboujamous NM et al (2019) Meta-analysis of atrial fibrillation ablation in patients with systolic heart failure. Cardiovasc Ther 2019:8181657

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kirchhof P, Camm AJ, Goette A et al (2020) Early rhythm-control therapy in patients with atrial fibrillation. N Engl J Med 383:1305–1316

    Article  PubMed  Google Scholar 

  91. Gasparini M, Auricchio A, Regoli F et al (2006) Four-year efficacy of cardiac resynchronization therapy on exercise tolerance and disease progression: the importance of performing atrioventricular junction ablation in patients with atrial fibrillation. J Am Coll Cardiol 48:734–743

    Article  PubMed  Google Scholar 

  92. Manolis AS (2006) The deleterious consequences of right ventricular apical pacing: time to seek alternate site pacing. Pacing Clin Electrophysiol 29:298–315

    Article  PubMed  Google Scholar 

  93. Manolis AS, Sakellariou D, Andrikopoulos GK (2008) Alternate site pacing in patients at risk for heart failure. Angiology 59:97S-102S

    Article  PubMed  Google Scholar 

  94. Wilton SB, Leung AA, Ghali WA et al (2011) Outcomes of cardiac resynchronization therapy in patients with versus those without atrial fibrillation: a systematic review and meta-analysis. Heart Rhythm 8:1088–1094

    Article  PubMed  Google Scholar 

  95. Ganesan AN, Brooks AG, Roberts-Thomson KC et al (2012) Role of AV nodal ablation in cardiac resynchronization in patients with coexistent atrial fibrillation and heart failure a systematic review. J Am Coll Cardiol 59:719–726

    Article  PubMed  Google Scholar 

  96. Elliott MK, Mehta VS, Martic D et al (2021) Atrial fibrillation in cardiac resynchronization therapy. Heart Rhythm O2(2):784–795

    Article  Google Scholar 

  97. Hayes DL, Boehmer JP, Day JD et al (2011) Cardiac resynchronization therapy and the relationship of percent biventricular pacing to symptoms and survival. Heart Rhythm 8:1469–1475

    Article  PubMed  Google Scholar 

  98. Ousdigian KT, Borek PP, Koehler JL et al (2014) The epidemic of inadequate biventricular pacing in patients with persistent or permanent atrial fibrillation and its association with mortality. Circ Arrhythm Electrophysiol 7:370–376

    Article  PubMed  Google Scholar 

  99. Brignole M, Pentimalli F, Palmisano P et al (2021) AV junction ablation and cardiac resynchronization for patients with permanent atrial fibrillation and narrow QRS: the APAF-CRT mortality trial. Eur Heart J 42:4731–4739

    Article  CAS  PubMed  Google Scholar 

  100. Khazanie P, Greiner MA, Al-Khatib SM et al (2016) Comparative effectiveness of cardiac resynchronization therapy among patients with heart failure and atrial fibrillation: findings from the National Cardiovascular Data Registry’s Implantable Cardioverter-Defibrillator Registry. Circ Heart Fail 9:e002324

  101. Lopes C, Pereira T, Barra S (2014) Cardiac resynchronization therapy in patients with atrial fibrillation: a meta-analysis. Rev Port Cardiol 33:717–725

    Article  PubMed  Google Scholar 

  102. McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42:3599–3726

    Article  CAS  PubMed  Google Scholar 

  103. Seferovic PM, Ponikowski P, Anker SD et al (2019) Clinical practice update on heart failure 2019: pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 21:1169–1186

  104. January CT, Wann LS, Alpert JS et al (2014) 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation 130:e199-267

    PubMed  PubMed Central  Google Scholar 

  105. January CT, Wann LS, Calkins H et al (2019) 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol 74:104–132

    Article  PubMed  Google Scholar 

  106. Wyse DG, Waldo AL, DiMarco JP et al (2002) A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med 347:1825–1833

    Article  CAS  PubMed  Google Scholar 

  107. Van Gelder IC, Hagens VE, Bosker HA et al (2002) A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N Engl J Med 347:1834–1840

    Article  PubMed  Google Scholar 

  108. Suzuki S, Motoki H, Kanzaki Y et al (2020) Prognostic significance of resting heart rate in atrial fibrillation patients with heart failure with reduced ejection fraction. Heart Vessels 35:1109–1115

    Article  PubMed  Google Scholar 

  109. Saglietto A, Scarsoglio S, Ridolfi L et al (2019) Higher ventricular rate during atrial fibrillation relates to increased cerebral hypoperfusions and hypertensive events. Sci Rep 9:3779

    Article  PubMed  PubMed Central  Google Scholar 

  110. Manolis AS (2015) Rhythm or rate control management of atrial fibrillation: an overrated dilemma. Hellenic J Cardiol 56:495–500

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the preparation of this manuscript and approved the final version. ASM conceived and designed the project, curated/analyzed the data, wrote the initial draft, and edited/approved the final product; TAM conducted literature search, designed the figures, and edited/revised the manuscript; AAM conducted literature search, constructed the tables, and edited/revised the manuscript; HM supervised the project, analyzed the data, reviewed, revised, edited, and approved the manuscript.

Corresponding author

Correspondence to Antonis S. Manolis.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• Atrial fibrillation (AF)-induced tachycardiomyopathy (AF-TCM) is the most common type of arrhythmia-induced cardiomyopathy, causing left ventricular (LV) dysfunction and heart failure (HF)

• Mechanisms involved in AF-TCM include principally fast ventricular rates (VR), aided by loss of atrial contraction, irregular heart rate, neurohumoral activation, and structural myocardial changes

• When AF-TCM is suspected in AF patients, VR and rhythm control should be rigorously pursued

• Restoration and maintenance of sinus rhythm, e.g., via ablation, is superior to VR control for prophylaxis and/or recovery of LV function; however, when not feasible or not a choice, VR control is the next best strategy

• Data, albeit less robust, also point to deleterious effects of slow VRs on LV function

• Thus, a J-shaped relationship between VR and clinical outcome has been suggested, with an optimal VR around 65 bpm, ranging between 60 and 80 bpm; VRs above and below this range may confer higher morbidity and mortality rates

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manolis, A.S., Manolis, T.A., Manolis, A.A. et al. Atrial fibrillation-induced tachycardiomyopathy and heart failure: an underappreciated and elusive condition. Heart Fail Rev 27, 2119–2135 (2022). https://doi.org/10.1007/s10741-022-10221-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-022-10221-1

Keywords

Navigation