Skip to main content

Advertisement

Log in

Cardiotoxicity in HER2-positive breast cancer patients

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Due to the recent advances in diagnosis and management of patients with HER2-positive breast cancer, especially through novel HER2-targeted agents, cardiotoxicity becomes an emerging problem. Although chemotherapy significantly increases survival, the risk of cardiovascular disease development is high and still underestimated and could imply treatment discontinuation. Frequently, due to lack of rigorous diagnosis strategies, cardiotoxicity assessment is delayed, and, moreover, the efficacy of current therapy options in restoring heart function is questionable. For a comprehensive risk assessment, it is vital to characterize the clinical spectrum of HER2-targeted agents and anthracyclines, as well as their pathogenic pathways involved in cardiotoxicity. Advanced cardiovascular multimodal imaging and circulating biomarkers plays primary roles in early assessing cardiotoxicity and also in guiding specific preventive measures. Even though the knowledge in this field is rapidly expanding, there are still questions that arise regarding the optimal approach in terms of timing and methods. The aim of the current review aims to providean overview of currently available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferlay J, Colombet M, Soerjomataram I et al (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144:1941–1953. https://doi.org/10.1002/ijc.31937

    Article  CAS  PubMed  Google Scholar 

  2. Peintinger F (2019) National breast screening programs across Europe. Breast Care (Basel) 14:354–358. https://doi.org/10.1159/000503715

    Article  Google Scholar 

  3. Rudzinski T, Ciesielczyk M, Religa W et al (2007) Doxorubicin-induced ventricular arrhythmia treated by implantation of an automatic cardioverter-defibrillator. Europace 9:278–280. https://doi.org/10.1093/europace/eum033

    Article  PubMed  Google Scholar 

  4. Luis Zamorano J, Lancellotti P, Mun R, oz D, et al (2016) ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 37:2768–2801. https://doi.org/10.1093/eurheartj/ehw211

    Article  Google Scholar 

  5. Shaikh AY, Shih JA (2012) Chemotherapy-induced cardiotoxicity. Curr Heart Fail Rep 9:117–127. https://doi.org/10.1007/s11897-012-0083-y

    Article  CAS  PubMed  Google Scholar 

  6. Seidman A, Hudis C, Pierri MK et al (2002) Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 20:1215–1221. https://doi.org/10.1200/jco.2002.20.5.1215

    Article  CAS  PubMed  Google Scholar 

  7. Plana JC, Galderisi M, Barac A et al (2014) Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 27:911–939. https://doi.org/10.1016/j.echo.2014.07.012

    Article  PubMed  Google Scholar 

  8. Gernaat SAM, Ho PJ, Rijnberg N et al (2017) Risk of death from cardiovascular disease following breast cancer: a systematic review. Breast Cancer Res Treat 164:537–555. https://doi.org/10.1007/s10549-017-4282-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koutsoukis A, Ntalianis A, Repasos E et al (2018) Cardio-oncology: a focus on cardiotoxicity. Eur Cardiol 13:64–69. https://doi.org/10.15420/ecr.2017:17:2

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yarden Y (2001) Biology of HER2 and its importance in breast cancer. In: Oncology. S. Karger AG, pp 1–13.

  11. Polónia A, Oliveira G, Schmitt F (2017) Characterization of HER2 gene amplification heterogeneity in invasive and in situ breast cancer using bright-field in situ hybridization. Virchows Arch 471:589–598. https://doi.org/10.1007/s00428-017-2189-9

    Article  CAS  PubMed  Google Scholar 

  12. Cardinale D, Colombo A, Bacchiani G et al (2015) Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131:1981–1988. https://doi.org/10.1161/CIRCULATIONAHA.114.013777

    Article  CAS  PubMed  Google Scholar 

  13. Mele D, Tocchetti CG, Pagliaro P et al (2016) Pathophysiology of anthracycline cardiotoxicity. J Cardiovasc Med 17:S3–S11. https://doi.org/10.2459/JCM.0000000000000378

    Article  CAS  Google Scholar 

  14. Koleini N, Kardami E (2017) Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget 8:46663–46680. https://doi.org/10.18632/oncotarget.16944

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cascales A, Pastor-Quirante F, Sánchez-Vega B et al (2013) Association of anthracycline-related cardiac histological lesions with NADPH oxidase functional polymorphisms. Oncologist 18:446–453. https://doi.org/10.1634/theoncologist.2012-0239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Özcelik C, Erdmann B, Pilz B et al (2002) Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci U S A 99:8880–8885. https://doi.org/10.1073/pnas.122249299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Varricchi G, Ameri P, Cadeddu C et al (2018) Antineoplastic drug-induced cardiotoxicity: a redox perspective. Front Physiol 9:167. https://doi.org/10.3389/fphys.2018.00167

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mohan N, Shen Y, Endo Y et al (2016) Trastuzumab, but not pertuzumab, dysregulates HER2 signaling to mediate inhibition of autophagy and increase in reactive oxygen species production in human cardiomyocytes. Mol Cancer Ther 15:1321–1331. https://doi.org/10.1158/1535-7163.MCT-15-0741

    Article  CAS  PubMed  Google Scholar 

  19. ElZarrad MK, Mukhopadhyay P, Mohan N et al (2013) Trastuzumab alters the expression of genes essential for cardiac function and induces ultrastructural changes of cardiomyocytes in mice. PLoS One 8:e79543. https://doi.org/10.1371/journal.pone.0079543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cameron D, Piccart-Gebhart MJ, Gelber RD et al (2017) 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. Lancet 389:1195–1205. https://doi.org/10.1016/S0140-6736(16)32616-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Payne DL, Nohria A (2017) Prevention of chemotherapy induced cardiomyopathy. Curr Heart Fail Rep 14:398–403. https://doi.org/10.1007/s11897-017-0353-9

    Article  CAS  PubMed  Google Scholar 

  22. Lidbrink E, Chmielowska E, Otremba B et al (2019) A real-world study of cardiac events in > 3700 patients with HER2-positive early breast cancer treated with trastuzumab: final analysis of the OHERA study. Breast Cancer Res Treat 174:187–196. https://doi.org/10.1007/s10549-018-5058-6

    Article  CAS  PubMed  Google Scholar 

  23. Durand J-B, Valero V, Lenihan DJ et al (2005) Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment Predictive value of circulating tumor cells View project reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. Artic J Clin Oncol 23:7820–7826. https://doi.org/10.1200/JCO.2005.13.300

    Article  CAS  Google Scholar 

  24. Conte P, Frassoldati A, Bisagni G et al (2018) Nine weeks versus 1 year adjuvant trastuzumab in combination with chemotherapy: final results of the phase III randomized Short-HER study. Ann Oncol 29:2328–2333. https://doi.org/10.1093/annonc/mdy414

    Article  CAS  PubMed  Google Scholar 

  25. Earl HM, Hiller L, Vallier AL et al (2019) 6 versus 12 months of adjuvant trastuzumab for HER2-positive early breast cancer (PERSEPHONE): 4-year disease-free survival results of a randomised phase 3 non-inferiority trial. Lancet 393:2599–2612. https://doi.org/10.1016/S0140-6736(19)30650-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jacquinot Q, Paget-Bailly S, Fumoleau P et al (2018) Fluctuation of the left ventricular ejection fraction in patients with HER2-positive early breast cancer treated by 12 months of adjuvant trastuzumab. Breast 41:1–7. https://doi.org/10.1016/j.breast.2018.06.001

    Article  PubMed  Google Scholar 

  27. Chen J, Long JB, Hurria A et al (2012) Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol 60:2504–2512. https://doi.org/10.1016/j.jacc.2012.07.068

    Article  CAS  PubMed  Google Scholar 

  28. Russo G, Cioffi G, Gori S et al (2014) Role of hypertension on new onset congestive heart failure in patients receiving trastuzumab therapy for breast cancer. J Cardiovasc Med 15:141–146. https://doi.org/10.2459/JCM.0b013e328365afb5

    Article  CAS  Google Scholar 

  29. Guenancia C, Lefebvre A, Cardinale D et al (2016) Obesity as a risk factor for anthracyclines and trastuzumab cardiotoxicity in breast cancer: a systematic review and meta-analysis. J Clin Oncol 34:3157–3165. https://doi.org/10.1200/JCO.2016.67.4846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jawa Z, Perez RM, Garlie L et al (2016) Risk factors of trastuzumab-induced cardiotoxicity in breast cancer: a meta-analysis. Medicine (Baltimore) 95:e5195. https://doi.org/10.1097/MD.0000000000005195

    Article  CAS  Google Scholar 

  31. Litvak A, Batukbhai B, Russell SD et al (2018) Racial disparities in the rate of cardiotoxicity of HER2-targeted therapies among women with early breast cancer. Cancer 124:1904–1911. https://doi.org/10.1002/cncr.31260

    Article  CAS  PubMed  Google Scholar 

  32. Udagawa C, Nakamura H, Ohnishi H et al (2018) Whole exome sequencing to identify genetic markers for trastuzumab-induced cardiotoxicity. Cancer Sci 109:446–452. https://doi.org/10.1111/cas.13471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stanton SE, Ward MM, Christos P et al (2015) Pro1170 Ala polymorphism in HER2-neu is associated with risk of trastuzumab cardiotoxicity. BMC Cancer 15:267. https://doi.org/10.1186/s12885-015-1298-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Von Minckwitz G, Procter M, De Azambuja E et al (2017) Adjuvant pertuzumab and trastuzumab in early her2-positive breast cancer. N Engl J Med 377:122–131. https://doi.org/10.1056/NEJMoa1703643

    Article  Google Scholar 

  35. Sendur MA, Aksoy S, Altundag K (2015) Pertuzumab-induced cardiotoxicity: safety compared with trastuzumab. Futur Oncol 11:13–15. https://doi.org/10.2217/fon.14.184

    Article  CAS  Google Scholar 

  36. Dawood S, Sirohi B (2015) Pertuzumab: a new anti-HER2 drug in the management of women with breast cancer. Futur Oncol 11:923–931. https://doi.org/10.2217/fon.15.7

    Article  CAS  Google Scholar 

  37. Lees C, Yazdan-Ashoori P, Jerzak KJ, Gandhi S (2019) Takotsubo cardiomyopathy during anti-HER2 therapy for metastatic breast cancer. Oncologist 24:e80–e82. https://doi.org/10.1634/theoncologist.2018-0285

    Article  PubMed  Google Scholar 

  38. Voigtlaender M, Schneider-Merck T, Trepel M (2018) Lapatinib. In: Recent Results in Cancer Research. Springer New York LLC, pp 19–44.

  39. Choi HD, Chang MJ (2017) Cardiac toxicities of lapatinib in patients with breast cancer and other HER2-positive cancers: a meta-analysis. Breast Cancer Res Treat 166:927–936. https://doi.org/10.1007/s10549-017-4460-9

    Article  CAS  PubMed  Google Scholar 

  40. Guan Z, Xu B, Desilvio ML et al (2013) Randomized trial of lapatinib versus placebo added to paclitaxel in the treatment of human epidermal growth factor receptor 2–overexpressing metastatic breast cancer. J Clin Oncol 31:1947–1953. https://doi.org/10.1200/JCO.2011.40.5241

    Article  CAS  PubMed  Google Scholar 

  41. Johnston SRD, Hegg R, Im SA et al (2018) Phase III, randomized study of dual human epidermal growth factor receptor 2 (HER2) blockade with lapatinib plus trastuzumab in combination with an aromatase inhibitor in postmenopausal women with HER2-positive, hormone receptor-positive metastatic breast cancer: ALTERNATIVE. J Clin Oncol 36:741–748. https://doi.org/10.1200/JCO.2017.74.7824

    Article  CAS  PubMed  Google Scholar 

  42. Hsu WT, Huang CY, Yen CYT et al (2018) The HER2 inhibitor lapatinib potentiates doxorubicin-induced cardiotoxicity through iNOS signaling. Theranostics 8:3176–3188. https://doi.org/10.7150/thno.23207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nasrazadani A, Brufsky A (2020) Neratinib: The emergence of a new player in the management of HER2+ breast cancer brain metastasis. Futur Oncol 16:247–254

    Article  CAS  Google Scholar 

  44. Chan A, Delaloge S, Holmes FA et al (2016) Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 17:367–377. https://doi.org/10.1016/S1470-2045(15)00551-3

    Article  CAS  PubMed  Google Scholar 

  45. Park JW, Liu MC, Yee D et al (2016) Adaptive randomization of neratinib in early breast cancer. N Engl J Med 375:11–22. https://doi.org/10.1056/nejmoa1513750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Burstein HJ, Sun Y, Dirix LY et al (2010) Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J Clin Oncol 28:1301–1307. https://doi.org/10.1200/JCO.2009.25.8707

    Article  CAS  PubMed  Google Scholar 

  47. Abraham J, Montero AJ, Jankowitz RC et al (2019) Safety and efficacy of T-DM1 plus neratinib in patients with metastatic HER2-positive breast cancer: NSABP Foundation Trial FB-10. J Clin Oncol 37:2601–2609. https://doi.org/10.1200/JCO.19.00858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baron JM, Boster BL, Barnett CM (2014) Ado-trastuzumab emtansine (T-DM1): a novel antibody-drug conjugate for the treatment of HER2-positive metastatic breast cancer. J Oncol Pharm Pract 21:132–142. https://doi.org/10.1177/1078155214527144

    Article  CAS  PubMed  Google Scholar 

  49. Pondé N, Amaye L, Lambertini M et al (2020) Trastuzumab emtansine (T-DM1)-associated cardiotoxicity: pooled analysis in advanced HER2-positive breast cancer. Eur J Cancer 126:65–73. https://doi.org/10.1016/j.ejca.2019.11.023

    Article  CAS  PubMed  Google Scholar 

  50. Marinello J, Delcuratolo M, Capranico G (2018) Anthracyclines as topoisomerase II poisons: from early studies to new perspectives. IntJ Mol Sci 19:3480. https://doi.org/10.3390/ijms19113480

    Article  CAS  Google Scholar 

  51. Maestrini V, Cheang MH, Kotwinski P et al (2017) Late anthracycline-related cardiotoxicity in low-risk breast cancer patients. J Am Coll Cardiol 69:2573–2575. https://doi.org/10.1016/j.jacc.2017.03.560

    Article  PubMed  Google Scholar 

  52. Appel JM, Nielsen D, Zerahn B et al (2007) Anthracycline-induced chronic cardiotoxicity and heart failure. Acta Oncol 46:576–580. https://doi.org/10.1080/02841860601156165

    Article  CAS  PubMed  Google Scholar 

  53. Aminkeng F, Ross CJD, Rassekh SR et al (2016) Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol 82:683–695. https://doi.org/10.1111/bcp.13008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Upshaw JN, Ruthazer R, Miller KD et al (2019) Personalized decision making in early stage breast cancer: applying clinical prediction models for anthracycline cardiotoxicity and breast cancer mortality demonstrates substantial heterogeneity of benefit-harm trade-off. Clin Breast Cancer 19:259-267.e1. https://doi.org/10.1016/j.clbc.2019.04.012

    Article  PubMed  PubMed Central  Google Scholar 

  55. Reinbolt RE, Patel R, Pan X et al (2016) Risk factors for anthracycline-associated cardiotoxicity. Support Care Cancer 24:2173–2180. https://doi.org/10.1007/s00520-015-3008-y

    Article  PubMed  Google Scholar 

  56. Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97:2869–2879. https://doi.org/10.1002/cncr.11407

    Article  CAS  PubMed  Google Scholar 

  57. Mao Z, Shen K, Zhu L et al (2019) Comparisons of cardiotoxicity and efficacy of anthracycline-based therapies in breast cancer: a network meta-analysis of randomized clinical trials. Oncol Res Treat 42:405–413. https://doi.org/10.1159/000500204

    Article  CAS  PubMed  Google Scholar 

  58. Arciniegas Calle MC, Sandhu NP, Xia H et al (2018) Two-dimensional speckle tracking echocardiography predicts early subclinical cardiotoxicity associated with anthracycline-trastuzumab chemotherapy in patients with breast cancer. BMC Cancer 18:1037. https://doi.org/10.1186/s12885-018-4935-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Florescu M, Magda LS, Enescu OA et al (2014) Early detection of epirubicin-induced cardiotoxicity in patients with breast cancer. J Am Soc Echocardiogr 27:83–92. https://doi.org/10.1016/j.echo.2013.10.008

    Article  PubMed  Google Scholar 

  60. Baratta S, Damiano MA, Marchese ML et al (2013) Serum markers, conventional Doppler echocardiography and two-dimensional systolic strain in the diagnosis of chemotherapy-induced myocardial toxicity. Argentine J Cardiol 81:133–138. https://doi.org/10.7775/AJC.81.2.2300

    Article  Google Scholar 

  61. Negishi K, Negishi T, Hare JL et al (2013) Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr 26:493–498. https://doi.org/10.1016/j.echo.2013.02.008

    Article  PubMed  Google Scholar 

  62. Sawaya H, Sebag IA, Plana JC et al (2012) Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging 5:596–603. https://doi.org/10.1161/CIRCIMAGING.112.973321

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fallah-Rad N, Lytwyn M, Fang T et al (2008) Delayed contrast enhancement cardiac magnetic resonance imaging in trastuzumab induced cardiomyopathy. J Cardiovasc Magn Reson 10:5. https://doi.org/10.1186/1532-429X-10-5

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jordan JH, Todd RM, Vasu S, Hundley WG (2018) Cardiovascular magnetic resonance in the oncology patient. JACC Cardiovasc Imaging 11:1150–1172. https://doi.org/10.1016/j.jcmg.2018.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kang Y, Scherrer-Crosbie M (2019) Echocardiography imaging of cardiotoxicity. Cardiol Clin 37:419–427. https://doi.org/10.1016/j.ccl.2019.07.006

    Article  PubMed  Google Scholar 

  66. Wang C-L, Chu P-H (2016) Echocardiography for evaluation of oncology therapy-related cardiotoxicity. Acta Cardiol Sin 32:560–564. https://doi.org/10.6515/ACS20151024A

    Article  PubMed  PubMed Central  Google Scholar 

  67. Porter TR, Abdelmoneim S, Belcik JT et al (2014) Guidelines for the cardiac sonographer in the performance of contrast echocardiography: a focused update from the American Society of Echocardiography. J Am Soc Echocardiogr 27:797–810. https://doi.org/10.1016/j.echo.2014.05.011

    Article  PubMed  Google Scholar 

  68. Pickett CA, Cheezum MK, Kassop D et al (2015) Accuracy of cardiac CT, radionucleotide and invasive ventriculography, two-and three-dimensional echocardiography, and SPECT for left and right ventricular ejection fraction compared with cardiac MRI: a meta-analysis. Eur Heart J Cardiovasc Imaging 16:848–852. https://doi.org/10.1093/ehjci/jeu313

    Article  PubMed  Google Scholar 

  69. Kang Y, Cheng L, Li L et al (2013) Early detection of anthracycline-induced cardiotoxicity using two-dimensional speckle tracking echocardiography. Cardiol J 20:592–599. https://doi.org/10.5603/CJ.2013.0158

    Article  PubMed  Google Scholar 

  70. Calleja A, Poulin F, Khorolsky C et al (2015) Right ventricular dysfunction in patients experiencing cardiotoxicity during breast cancer therapy. J Oncol 2015:609194. https://doi.org/10.1155/2015/609194

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chang WT, Shih JY, Feng YH et al (2016) The early predictive value of right ventricular strain in epirubicin-induced cardiotoxicity in patients with breast cancer. Acta Cardiol Sin 32:550–559. https://doi.org/10.6515/ACS20151023A

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ferreira de Souza T, Quinaglia T, Neilan TG, Coelho-Filho OR (2019) Assessment of cardiotoxicity of cancer chemotherapy: the value of cardiac MR imaging. Magn Reson Imaging Clin N Am 27:533–544. https://doi.org/10.1016/j.mric.2019.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cove-Smith L, Woodhouse N, Hargreaves A et al (2014) An integrated characterization of serological, pathological, and functional events in doxorubicin-induced cardiotoxicity. Toxicol Sci 140:3–15. https://doi.org/10.1093/toxsci/kfu057

    Article  CAS  PubMed  Google Scholar 

  74. Li W, Croce K, Steensma DP et al (2015) Vascular and metabolic implications of novel targeted cancer therapies: focus on kinase inhibitors. J Am Coll Cardiol 66:1160–1178. https://doi.org/10.1016/j.jacc.2015.07.025

    Article  PubMed  Google Scholar 

  75. Grover S, Lou PW, Bradbrook C et al (2015) Early and late changes in markers of aortic stiffness with breast cancer therapy. Intern Med J 45:140–147. https://doi.org/10.1111/imj.12645

    Article  CAS  PubMed  Google Scholar 

  76. Gong IY, Ong G, Brezden-Masley C et al (2019) Early diastolic strain rate measurements by cardiac MRI in breast cancer patients treated with trastuzumab: a longitudinal study. Int J Cardiovasc Imaging 35:653–662. https://doi.org/10.1007/s10554-018-1482-2

    Article  PubMed  Google Scholar 

  77. Eckman DM, Stacey RB, Rowe R et al (2013) Weekly doxorubicin increases coronary arteriolar wall and adventitial thickness. PLoS One 8:e57554. https://doi.org/10.1371/journal.pone.0057554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Neilan TG, Coelho-Filho OR, Pena-Herrera D et al (2012) Left ventricular mass in patients with a cardiomyopathy after treatment with anthracyclines. Am J Cardiol 110:1679–1686. https://doi.org/10.1016/j.amjcard.2012.07.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Grover S, Leong DP, Chakrabarty A et al (2013) Left and right ventricular effects of anthracycline and trastuzumab chemotherapy: a prospective study using novel cardiac imaging and biochemical markers. Int J Cardiol 168:5465–5467. https://doi.org/10.1016/j.ijcard.2013.07.246

    Article  PubMed  Google Scholar 

  80. Houbois CP, Thavendiranathan P, Wintersperger BJ (2020) Cardiovascular magnetic resonance imaging: identifying the effects of cancer therapy. J Thorac Imaging 35:12–25. https://doi.org/10.1097/RTI.0000000000000430

    Article  PubMed  Google Scholar 

  81. Wassmuth R, Lentzsch S, Erdbruegger U et al (2001) Subclinical cardiotoxic effects of anthracyclines as assessed by magnetic resonance imaging - a pilot study. Am Heart J 141:1007–1013. https://doi.org/10.1067/mhj.2001.115436

    Article  CAS  PubMed  Google Scholar 

  82. Simonetti OP, Kim RJ, Fieno DS et al (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218:215–223. https://doi.org/10.1148/radiology.218.1.r01ja50215

    Article  CAS  PubMed  Google Scholar 

  83. Friedrich MG, Sechtem U, Schulz-Menger J et al (2009) Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol 53:1475–1487. https://doi.org/10.1016/j.jacc.2009.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  84. Muehlberg F, Funk S, Zange L et al (2018) Native myocardial T1 time can predict development of subsequent anthracycline-induced cardiomyopathy. ESC Hear Fail 5:620–629. https://doi.org/10.1002/ehf2.12277

    Article  Google Scholar 

  85. Hong YJ, Park HS, Park JK et al (2017) Early detection and serial monitoring of anthracycline-induced cardiotoxicity using T1-mapping cardiac magnetic resonance imaging: an animal study. Sci Rep 7:2663. https://doi.org/10.1038/s41598-017-02627-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tham EB, Haykowsky MJ, Chow K et al (2013) Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. J Cardiovasc Magn Reson 15:48. https://doi.org/10.1186/1532-429X-15-48

    Article  PubMed  PubMed Central  Google Scholar 

  87. Toro-Salazar OH, Gillan E, O’Loughlin MT et al (2013) Occult cardiotoxicity in childhood cancer survivors exposed to anthracycline therapy. Circ Cardiovasc Imaging 6:873–880. https://doi.org/10.1161/CIRCIMAGING.113.000798

    Article  PubMed  Google Scholar 

  88. Galán-Arriola C, Lobo M, Vílchez-Tschischke JP et al (2019) Serial magnetic resonance imaging to identify early stages of anthracycline-induced cardiotoxicity. J Am Coll Cardiol 73:779–791. https://doi.org/10.1016/j.jacc.2018.11.046

    Article  PubMed  Google Scholar 

  89. Ferreira de Souza T, Silva QAC, T, Osorio Costa F, et al (2018) Anthracycline therapy is associated with cardiomyocyte atrophy and preclinical manifestations of heart disease. JACC Cardiovasc Imaging 11:1045–1055. https://doi.org/10.1016/j.jcmg.2018.05.012

    Article  PubMed  Google Scholar 

  90. Sampath S, Parimal AS, Huang W et al (2020) Quantification of regional myocardial mean intracellular water lifetime: a nonhuman primate study in myocardial stress. NMR Biomed 33:e4248. https://doi.org/10.1002/nbm.4248

    Article  PubMed  Google Scholar 

  91. D’Amore C, Gargiulo P, Paolillo S et al (2014) Nuclear imaging in detection and monitoring of cardiotoxicity. World J Radiol 6:486–492. https://doi.org/10.4329/wjr.v6.i7.486

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nousiainen T, Jantunen E, Vanninen E, Hartikainen J (2002) Early decline in left ventricular ejection fraction predicts doxorubicin cardiotoxicity in lymphoma patients. Br J Cancer 86:1697–1700. https://doi.org/10.1038/sj.bjc.6600346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kitayama H, Kondo T, Sugiyama J et al (2017) High-sensitive troponin T assay can predict anthracycline- and trastuzumab-induced cardiotoxicity in breast cancer patients. Breast Cancer 24:774–782. https://doi.org/10.1007/s12282-017-0778-8

    Article  PubMed  Google Scholar 

  94. Cardinale D, Sandri MT, Colombo A et al (2004) Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 109:2749–2754. https://doi.org/10.1161/01.CIR.0000130926.51766.CC

    Article  CAS  PubMed  Google Scholar 

  95. Simões R, Silva LM, Cruz ALVM et al (2018) Troponin as a cardiotoxicity marker in breast cancer patients receiving anthracycline-based chemotherapy: a narrative review. Biomed Pharmacother 107:989–996. https://doi.org/10.1016/j.biopha.2018.08.035

    Article  CAS  PubMed  Google Scholar 

  96. Gulati G, Heck SL, Røsjø H et al (2017) Neurohormonal blockade and circulating cardiovascular biomarkers during anthracycline therapy in breast cancer patients: results from the PRADA (Prevention of Cardiac Dysfunction During Adjuvant Breast Cancer Therapy) study. J Am Heart Assoc 6(6):e006513. https://doi.org/10.1161/JAHA.117.006513

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ponde N, Bradbury I, Lambertini M et al (2018) Cardiac biomarkers for early detection and prediction of trastuzumab and/or lapatinib-induced cardiotoxicity in patients with HER2-positive early-stage breast cancer: a NeoALTTO sub-study (BIG 1–06). Breast Cancer Res Treat 168:631–638. https://doi.org/10.1007/s10549-017-4628-3

    Article  CAS  PubMed  Google Scholar 

  98. Di WY, Chen SX, Ren LQ (2016) Serum B-type natriuretic peptide levels as a marker for anthracycline-induced cardiotoxicity. Oncol Lett 11:3483–3492. https://doi.org/10.3892/ol.2016.4424

    Article  CAS  Google Scholar 

  99. Skovgaard D, Hasbak P, Kjaer A (2014) BNP predicts chemotherapy-related cardiotoxicity and death: comparison with gated equilibrium radionuclide ventriculography. PLoS One 9:e96736. https://doi.org/10.1371/journal.pone.0096736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lu X, Zhao Y, Chen C et al (2019) BNP as a marker for early prediction of anthracycline-induced cardiotoxicity in patients with breast cancer. Oncol Lett 18:4992–5001. https://doi.org/10.3892/ol.2019.10827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mavinkurve-Groothuis AMC, Groot-Loonen J, Bellersen L et al (2009) Abnormal nt-pro-bnp levels in asymptomatic long-term survivors of childhood cancer treated with anthracyclines. Pediatr Blood Cancer 52:631–636. https://doi.org/10.1002/pbc.21913

    Article  PubMed  Google Scholar 

  102. Dhir V, Yan AT, Nisenbaum R et al (2019) Assessment of left ventricular function by CMR versus MUGA scans in breast cancer patients receiving trastuzumab: a prospective observational study. Int J Cardiovasc Imaging 35:2085–2093. https://doi.org/10.1007/s10554-019-01648-z

    Article  PubMed  Google Scholar 

  103. Li X, Teng C, Ma J et al (2019) miR-19 family: a promising biomarker and therapeutic target in heart, vessels and neurons. Life Sci 232:116651. https://doi.org/10.1016/j.lfs.2019.116651

    Article  CAS  PubMed  Google Scholar 

  104. Chistiakov DA, Orekhov AN, Bobryshev YV (2016) Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol 94:107–121. https://doi.org/10.1016/j.yjmcc.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  105. Yadi W, Shurui C, Tong Z et al (2020) Bioinformatic analysis of peripheral blood miRNA of breast cancer patients in relation with anthracycline cardiotoxicity. BMC Cardiovasc Disord 20:43. https://doi.org/10.1186/s12872-020-01346-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li J, Wan W, Chen T et al (2019) miR-451 silencing inhibited doxorubicin exposure-induced cardiotoxicity in mice. Biomed Res Int 2019:1528278. https://doi.org/10.1155/2019/1528278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Qin X, Chang F, Wang Z, Jiang W (2018) Correlation of circulating pro-angiogenic miRNAs with cardiotoxicity induced by epirubicin/cyclophosphamide followed by docetaxel in patients with breast cancer. Cancer Biomarkers 23:473–484. https://doi.org/10.3233/CBM-181301

    Article  CAS  PubMed  Google Scholar 

  108. Ruggeri C, Gioffré S, Chiesa M et al (2018) A specific circulating microRNA cluster is associated to late differential cardiac response to doxorubicin-induced cardiotoxicity in vivo. Dis Markers 2018:8395651. https://doi.org/10.1155/2018/8395651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Frères P, Bouznad N, Servais L et al (2018) Variations of circulating cardiac biomarkers during and after anthracycline-containing chemotherapy in breast cancer patients. BMC Cancer 18:102. https://doi.org/10.1186/s12885-018-4015-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rigaud VOC, Ferreira LRP, Ayub-Ferreira SM et al (2017) Circulating miR-1 as a potential biomarker of doxorubicin-induced cardiotoxicity in breast cancer patients. Oncotarget 8:6994–7002. https://doi.org/10.18632/oncotarget.14355

    Article  PubMed  Google Scholar 

  111. Leger KJ, Leonard D, Nielson D et al (2017) Circulating microRNAs: potential markers of cardiotoxicity in children and young adults treated with anthracycline chemotherapy. J Am Heart Assoc 6:e004653. https://doi.org/10.1161/JAHA.116.004653

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zhu JN, Fu YH, Hu ZQ et al (2017) Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity. Sci Rep 7:11879. https://doi.org/10.1038/s41598-017-12192-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nishimura Y, Kondo C, Morikawa Y et al (2015) Plasma miR-208 as a useful biomarker for drug-induced cardiotoxicity in rats. J Appl Toxicol 35:173–180. https://doi.org/10.1002/jat.3044

    Article  CAS  PubMed  Google Scholar 

  114. Oliveira-Carvalho V, Ferreira LRP, Bocchi EA (2015) Circulating mir-208a fails as a biomarker of doxorubicin-induced cardiotoxicity in breast cancer patients. J Appl Toxicol 35:1071–1072. https://doi.org/10.1002/jat.3185

    Article  CAS  PubMed  Google Scholar 

  115. Abraham SA, Waterhouse DN, Mayer LD et al (2005) The liposomal formulation of doxorubicin. Meth Enzym 391:71–97. https://doi.org/10.1016/S0076-6879(05)91004-5

    Article  CAS  PubMed  Google Scholar 

  116. O’Brien MER, Wigler N, Inbar M et al (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15:440–449. https://doi.org/10.1093/annonc/mdh097

    Article  PubMed  Google Scholar 

  117. Chen JJ, Wu PT, Middlekauff HR, Nguyen KL (2017) Aerobic exercise in anthracycline-induced cardiotoxicity: a systematic review of current evidence and future directions. Am J Physiol - Hear Circ Physiol 312:H213–H222. https://doi.org/10.1152/ajpheart.00646.2016

    Article  Google Scholar 

  118. Howden EJ, Bigaran A, Beaudry R et al (2019) Exercise as a diagnostic and therapeutic tool for the prevention of cardiovascular dysfunction in breast cancer patients. Eur J Prev Cardiol 26:305–315. https://doi.org/10.1177/2047487318811181

    Article  PubMed  Google Scholar 

  119. Reichardt P, Tabone MD, Mora J et al (2018) Risk-benefit of dexrazoxane for preventing anthracycline-related cardiotoxicity: re-evaluating the European labeling. Futur Oncol 14:2663–2676. https://doi.org/10.2217/fon-2018-0210

    Article  CAS  Google Scholar 

  120. Georgakopoulos P, Kyriakidis M, Perpinia A, et al (2019) The role of metoprolol and enalapril in the prevention of doxorubicin-induced cardiotoxicity in lymphoma patients. Anticancer Res 39:5703–5707. https://doi.org/10.21873/anticanres.13769

  121. Ma Y, Bai F, Qin F et al (2019) Beta-blockers for the primary prevention of anthracycline-induced cardiotoxicity: a meta-analysis of randomized controlled trials. BMC Pharmacol Toxicol 20:18. https://doi.org/10.1186/s40360-019-0298-6

    Article  PubMed  PubMed Central  Google Scholar 

  122. Guglin M, Krischer J, Tamura R et al (2019) Randomized trial of lisinopril versus carvedilol to prevent trastuzumab cardiotoxicity in patients with breast cancer. J Am Coll Cardiol 73:2859–2868. https://doi.org/10.1016/j.jacc.2019.03.495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nabati M, Janbabai G, Esmailian J, Yazdani J (2019) Effect of rosuvastatin in preventing chemotherapy-induced cardiotoxicity in women with breast cancer: a randomized, single-blind, placebo-controlled trial. J Cardiovasc Pharmacol Ther 24:233–241. https://doi.org/10.1177/1074248418821721

    Article  CAS  PubMed  Google Scholar 

  124. Davis MK, Villa D, Tsang TSM et al (2019) Effect of eplerenone on diastolic function in women receiving anthracycline-based chemotherapy for breast cancer. JACC CardioOncology 1:295–298. https://doi.org/10.1016/j.jaccao.2019.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  125. Pituskin E, Mackey JR, Koshman S et al (2017) Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-Breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol 35:870–877. https://doi.org/10.1200/JCO.2016.68.7830

    Article  CAS  PubMed  Google Scholar 

  126. Kheiri B, Abdalla A, Osman M et al (2018) Meta-analysis of carvedilol for the prevention of anthracycline-induced cardiotoxicity. Am J Cardiol 122:1959–1964. https://doi.org/10.1016/j.amjcard.2018.08.039

    Article  CAS  PubMed  Google Scholar 

  127. Wittayanukorn S, Qian J, Westrick SC et al (2018) Prevention of trastuzumab and anthracycline-induced cardiotoxicity using angiotensin-converting enzyme inhibitors or β-blockers in older adults with breast cancer. Am J Clin Oncol Cancer Clin Trials 41:909–918. https://doi.org/10.1097/COC.0000000000000389

    Article  CAS  Google Scholar 

  128. Cardinale D, Ciceri F, Latini R et al (2018) Anthracycline-induced cardiotoxicity: a multicenter randomised trial comparing two strategies for guiding prevention with enalapril: the International CardioOncology Society-one trial. Eur J Cancer 94:126–137. https://doi.org/10.1016/j.ejca.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  129. Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR et al (2018) Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY Trial. J Am Coll Cardiol 71:2281–2290. https://doi.org/10.1016/j.jacc.2018.02.049

    Article  CAS  PubMed  Google Scholar 

  130. Gupta V, Kumar Singh S, Agrawal V, Bali Singh T (2018) Role of ACE inhibitors in anthracycline-induced cardiotoxicity: a randomized, double-blind, placebo-controlled trial. Pediatr Blood Cancer 65:e27308. https://doi.org/10.1002/pbc.27308

    Article  CAS  PubMed  Google Scholar 

  131. Heck SL, Gulati G, Hoffmann P et al (2017) Effect of candesartan and metoprolol on myocardial tissue composition during anthracycline treatment: the PRADA trial. Eur Hear J - Cardiovasc Imaging 19:544–552. https://doi.org/10.1093/ehjci/jex159

    Article  Google Scholar 

  132. Calvillo-Argüelles O, Abdel-Qadir H, Michalowska M et al (2019) Cardioprotective effect of statins in patients with HER2-positive breast cancer receiving trastuzumab therapy. Can J Cardiol 35:153–159. https://doi.org/10.1016/j.cjca.2018.11.028

    Article  PubMed  Google Scholar 

  133. Gulati G, Heck SL, Ree AH et al (2016) Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J 37:1671–1680. https://doi.org/10.1093/eurheartj/ehw022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tashakori Beheshti A, Mostafavi Toroghi H, Hosseini G et al (2016) Carvedilol administration can prevent doxorubicin-induced cardiotoxicity: a double-blind randomized trial. Cardiology 134:47–53. https://doi.org/10.1159/000442722

    Article  CAS  PubMed  Google Scholar 

  135. Chotenimitkhun R, D’Agostino R, Lawrence JA et al (2015) Chronic statin administration may attenuate early anthracycline-associated declines in left ventricular ejection function. Can J Cardiol 31:302–307. https://doi.org/10.1016/j.cjca.2014.11.020

    Article  PubMed  Google Scholar 

  136. Akpek M, Ozdogru I, Sahin O et al (2015) Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur J Heart Fail 17:81–89. https://doi.org/10.1002/ejhf.196

    Article  CAS  PubMed  Google Scholar 

  137. Seicean S, Seicean A, Plana JC et al (2012) Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol 60:2384–2390. https://doi.org/10.1016/j.jacc.2012.07.067

    Article  CAS  PubMed  Google Scholar 

  138. Swain SM, Whaley FS, Gerber MC et al (1997) Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 15:1318–1332. https://doi.org/10.1200/JCO.1997.15.4.1318

    Article  CAS  PubMed  Google Scholar 

  139. Coulson R, Liew SH, Connelly AA et al (2017) The angiotensin receptor blocker, losartan, inhibits mammary tumor development and progression to invasive carcinoma. Oncotarget 8:18640–18656. https://doi.org/10.18632/oncotarget.15553

    Article  PubMed  PubMed Central  Google Scholar 

  140. Fang K, Zhang Y, Liu W, He C (2020) Effects of angiotensin-converting enzyme inhibitor/angiotensin receptor blocker use on cancer therapy-related cardiac dysfunction: a meta-analysis of randomized controlled trials. Heart Fail. Rev. https://doi.org/10.1007/s10741-019-09906-x

  141. Abuosa AM, Elshiekh AH, Qureshi K et al (2018) Prophylactic use of carvedilol to prevent ventricular dysfunction in patients with cancer treated with doxorubicin. Indian Heart J 70:S96–S100. https://doi.org/10.1016/j.ihj.2018.06.011

    Article  PubMed  PubMed Central  Google Scholar 

  142. Riccio G, Antonucci S, Coppola C et al (2018) Ranolazine attenuates trastuzumab-induced heart dysfunction by modulating ROS production. Front Physiol 9:38. https://doi.org/10.3389/fphys.2018.00038

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kabel AM, Elkhoely AA (2017) Targeting proinflammatory cytokines, oxidative stress, TGF-β1 and STAT-3 by rosuvastatin and ubiquinone to ameliorate trastuzumab cardiotoxicity. Biomed Pharmacother 93:17–26. https://doi.org/10.1016/j.biopha.2017.06.033

    Article  CAS  PubMed  Google Scholar 

  144. Curigliano G, Lenihan D, Fradley M et al (2020) Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol 31:171–190. https://doi.org/10.1016/j.annonc.2019.10.023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the contribution of Andrei Tomeci for graphical support.

Funding

The work was supported by Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, contract no.2461/29/17.01.2020 and by grant PN-III-P2-2.1-PED-2019–0844.

Author information

Authors and Affiliations

Authors

Contributions

Diana Gonciar, Alexandru Zlibut, and Lucia Agoston-Coldea performed the literature search and data analysis. The article was written by Diana Gonciar, Lucian Mocan, and Alexandru Zlibut. The content of the article was assessed by Teodora Mocan and Lucia Agoston-Coldea and further edited by Diana Gonciar and Alexandru Zlibut before submission.

Corresponding author

Correspondence to Lucia Agoston-Coldea.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonciar, D., Mocan, L., Zlibut, A. et al. Cardiotoxicity in HER2-positive breast cancer patients. Heart Fail Rev 26, 919–935 (2021). https://doi.org/10.1007/s10741-020-10072-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-10072-8

Keywords

Navigation