Skip to main content

Advertisement

Log in

SGLT2 inhibition and heart failure—current concepts

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) is a major risk factor for several cardiovascular (CV) conditions, including heart failure (HF). However, until recently, no therapy to treat patients with diabetes could also reduce CV risks related to HF. The EMPA-REG OUTCOME trial with empagliflozin was the first to demonstrate significant cardioprotective benefits in this population. Its impressive 35% reduction in hospitalizations for HF drew the attention of the scientific community to the possibility that pharmacologic sodium-glucose cotransporter 2 (SGLT2) inhibition could be part of the armamentarium for treating patients with HF, with and without diabetes. The recently published CANVAS Program (with canagliflozin) and real-life data from the CVD-Real Study (using dapagliflozin, empagliflozin, and canagliflozin) further strengthened this hypothesis, suggesting that the observed benefit is not restricted to a particular drug, but is rather a class effect. This review explores the effects of pharmacologic SGLT2 inhibitors’ use in cardiac function and discusses the potential role of this class of medication as a treatment for HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE (2017) IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50. https://doi.org/10.1016/j.diabres.2017.03.024

    Article  CAS  PubMed  Google Scholar 

  2. Defronzo RA (2009) Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58:773–795. https://doi.org/10.2337/db09-9028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ziaeian B, Fonarow GC (2016) Epidemiology and aetiology of heart failure. Nat Rev Cardiol 13:368–378. https://doi.org/10.1038/nrcardio.2016.25

    Article  PubMed  PubMed Central  Google Scholar 

  4. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2017) Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 135:e146–e603. https://doi.org/10.1161/CIR.0000000000000485

    Article  PubMed  PubMed Central  Google Scholar 

  5. Page RL, O’Bryant CL, Cheng D et al (2016) Drugs that may cause or exacerbate heart failure: a scientific statement from the American Heart Association. Circulation 134:e32–e69. https://doi.org/10.1161/CIR.0000000000000426

    Article  CAS  PubMed  Google Scholar 

  6. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241:2035–2038

    Article  CAS  PubMed  Google Scholar 

  7. Witteles RM, Fowler MB (2008) Insulin-resistant cardiomyopathy: clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol 51:93–102. https://doi.org/10.1016/j.jacc.2007.10.021

    Article  CAS  PubMed  Google Scholar 

  8. Gerstein HC (2008) The hemoglobin A1c level as a progressive risk factor for cardiovascular death, hospitalization for heart failure, or death in patients with chronic heart failure: an analysis of the Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) program. Arch Intern Med 168:1699–1704. https://doi.org/10.1001/archinte.168.15.1699

    Article  CAS  PubMed  Google Scholar 

  9. Kasznicki J, Drzewoski J (2014) State of the art paper heart failure in the diabetic population—pathophysiology, diagnosis and management. Arch Med Sci 3:546–556. https://doi.org/10.5114/aoms.2014.43748

    Article  Google Scholar 

  10. Dandamudi S, Slusser J, Mahoney DW, Redfield MM, Rodeheffer RJ, Chen HH (2014) The prevalence of diabetic cardiomyopathy: a population-based study in Olmsted County, Minnesota. J Card Fail 20:304–309. https://doi.org/10.1016/j.cardfail.2014.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  11. Isfort M, Stevens SCW, Schaffer S, Jong CJ, Wold LE (2014) Metabolic dysfunction in diabetic cardiomyopathy. Heart Fail Rev 19:35–48. https://doi.org/10.1007/s10741-013-9377-8

    Article  CAS  PubMed  Google Scholar 

  12. Lehrke M, Marx N (2017) Diabetes mellitus and heart failure. Am J Med 130:S40–S50. https://doi.org/10.1016/j.amjmed.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  13. Doehner W, Rauchhaus M, Ponikowski P, Godsland IF, von Haehling S, Okonko DO, Leyva F, Proudler AJ, Coats AJS, Anker SD (2005) Impaired insulin sensitivity as an independent risk factor for mortality in patients with stable chronic heart failure. J Am Coll Cardiol 46:1019–1026. https://doi.org/10.1016/j.jacc.2005.02.093

    Article  CAS  PubMed  Google Scholar 

  14. Bedi KCJ, Snyder NW, Brandimarto J et al (2016) Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation 133:706–716. https://doi.org/10.1161/CIRCULATIONAHA.115.017545

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Authors/Task Force Members, Document Reviewers (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the spec. Eur J Heart Fail 18:891–975. https://doi.org/10.1002/ejhf.592

    Article  PubMed  Google Scholar 

  16. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, EMPA-REG OUTCOME Investigators (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128. https://doi.org/10.1056/NEJMoa1504720

    Article  CAS  PubMed  Google Scholar 

  17. Dormandy JA, Charbonnel B, Eckland DJ et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (prospective pioglitazone clinical trial in macrovascular events): a randomised controlled trial. Lancet 366:1279–1289. https://doi.org/10.1016/S0140-6736(05)67528-9

    Article  CAS  PubMed  Google Scholar 

  18. Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, Jones NP, Komajda M, McMurray JJV (2009) Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 373:2125–2135. https://doi.org/10.1016/S0140-6736(09)60953-3

    Article  CAS  PubMed  Google Scholar 

  19. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, Cavender MA, Udell JA, Desai NR, Mosenzon O, McGuire D, Ray KK, Leiter LA, Raz I, SAVOR-TIMI 53 Steering Committee and Investigators (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369:1317–1326. https://doi.org/10.1056/NEJMoa1307684

    Article  CAS  PubMed  Google Scholar 

  20. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, Josse R, Kaufman KD, Koglin J, Korn S, Lachin JM, McGuire D, Pencina MJ, Standl E, Stein PP, Suryawanshi S, van de Werf F, Peterson ED, Holman RR, TECOS Study Group (2015) Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 373:232–242. https://doi.org/10.1056/NEJMoa1501352

    Article  CAS  PubMed  Google Scholar 

  21. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S, Wilson C, Cushman WC, Zannad F, EXAMINE Investigators (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369:1327–1335. https://doi.org/10.1056/NEJMoa1305889

    Article  CAS  PubMed  Google Scholar 

  22. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, Lawson FC, Ping L, Wei X, Lewis EF, Maggioni AP, McMurray J, Probstfield JL, Riddle MC, Solomon SD, Tardif JC, ELIXA Investigators (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373:2247–2257. https://doi.org/10.1056/NEJMoa1509225

    Article  CAS  PubMed  Google Scholar 

  23. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML, Woo V, Hansen O, Holst AG, Pettersson J, Vilsbøll T, SUSTAIN-6 Investigators (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375:1834–1844. https://doi.org/10.1056/NEJMoa1607141

    Article  CAS  PubMed  Google Scholar 

  24. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, Steinberg WM, Stockner M, Zinman B, Bergenstal RM, Buse JB, LEADER Steering Committee, LEADER Trial Investigators (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375:311–322. https://doi.org/10.1056/NEJMoa1603827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. DeFronzo RA, Norton L, Abdul-Ghani M (2016) Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol 13:11–26. https://doi.org/10.1038/nrneph.2016.170

    Article  PubMed  Google Scholar 

  26. Vallon V, Platt KA, Cunard R, Schroth J, Whaley J, Thomson SC, Koepsell H, Rieg T (2011) SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol 22:104–112. https://doi.org/10.1681/ASN.2010030246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vallon V (2015) The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med 66:255–270. https://doi.org/10.1146/annurev-med-051013-110046

    Article  CAS  PubMed  Google Scholar 

  28. Rahmoune H, Thompson PW, Ward JM et al (2005) Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 54:3427–3434. https://doi.org/10.2337/diabetes.54.12.3427

    Article  CAS  PubMed  Google Scholar 

  29. Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA (1987) Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 79:1510–1515. https://doi.org/10.1172/JCI112981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abdul-Ghani MA, DeFronzo RA, Norton L (2013) Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans. Diabetes 62:3324–3328. https://doi.org/10.2337/db13-0604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hadjadj S, Rosenstock J, Meinicke T, Woerle HJ, Broedl UC (2016) Initial combination of empagliflozin and metformin in patients with type 2 diabetes. Diabetes Care 39:1718–1728. https://doi.org/10.2337/dc16-0522

    Article  CAS  PubMed  Google Scholar 

  32. Lavalle-Gonzalez FJ, Januszewicz A, Davidson J et al (2013) Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia 56:2582–2592. https://doi.org/10.1007/s00125-013-3039-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schernthaner G, Gross JL, Rosenstock J, Guarisco M, Fu M, Yee J, Kawaguchi M, Canovatchel W, Meininger G (2013) Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulfonylurea: a 52-week randomized trial. Diabetes Care 36:2508–2515. https://doi.org/10.2337/dc12-2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cefalu WT, Leiter LA, Yoon K-H, Arias P, Niskanen L, Xie J, Balis DA, Canovatchel W, Meininger G (2013) Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 382:941–950. https://doi.org/10.1016/S0140-6736(13)60683-2

    Article  CAS  PubMed  Google Scholar 

  35. Pham SV, Chilton R (2017) EMPA-REG OUTCOME: the cardiologist’s point of view. Am J Med 130:S57–S62. https://doi.org/10.1016/j.amjmed.2017.04.006

    Article  PubMed  Google Scholar 

  36. Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J (2013) Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 15:853–862. https://doi.org/10.1111/dom.12127

    Article  CAS  PubMed  Google Scholar 

  37. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR, CANVAS Program Collaborative Group (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657. https://doi.org/10.1056/NEJMoa1611925

    Article  CAS  PubMed  Google Scholar 

  38. Merovci A, Solis-Herrera C, Daniele G, Eldor R, Fiorentino TV, Tripathy D, Xiong J, Perez Z, Norton L, Abdul-Ghani MA, DeFronzo RA (2014) Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Invest 124:509–514. https://doi.org/10.1172/JCI70704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferrannini E, Mark M, Mayoux E (2016) CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care 39:1108–1114. https://doi.org/10.2337/dc16-0330

    Article  PubMed  Google Scholar 

  40. Bonner C, Kerr-Conte J, Gmyr V, Queniat G, Moerman E, Thévenet J, Beaucamps C, Delalleau N, Popescu I, Malaisse WJ, Sener A, Deprez B, Abderrahmani A, Staels B, Pattou F (2015) Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med 21:512–517. https://doi.org/10.1038/nm.3828

    Article  CAS  PubMed  Google Scholar 

  41. Fralick M, Schneeweiss S, Patorno E (2017) Risk of diabetic ketoacidosis after initiation of an SGLT2 inhibitor. N Engl J Med 376:2300–2302. https://doi.org/10.1056/NEJMc1701990

    Article  PubMed  Google Scholar 

  42. Rosenstock J, Ferrannini E (2015) Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care 38:1638–1642. https://doi.org/10.2337/dc15-1380

    Article  CAS  PubMed  Google Scholar 

  43. Staels B (2017) Cardiovascular protection by sodium glucose cotransporter 2 inhibitors: potential mechanisms. Am J Med 130:S30–S39. https://doi.org/10.1016/j.amjmed.2017.04.009

    Article  CAS  PubMed  Google Scholar 

  44. Inzucchi SE, Zinman B, Fitchett D, Wanner C, Ferrannini E, Schumacher M, Schmoor C, Ohneberg K, Johansen OE, George JT, Hantel S, Bluhmki E, Lachin JM (2018) How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care 41:356–363. https://doi.org/10.2337/dc17-1096

    Article  PubMed  Google Scholar 

  45. Wolf P, Winhofer Y, Krssak M, Smajis S, Harreiter J, Kosi-Trebotic L, Fürnsinn C, Anderwald CH, Baumgartner-Parzer S, Trattnig S, Luger A, Krebs M (2016) Suppression of plasma free fatty acids reduces myocardial lipid content and systolic function in type 2 diabetes. Nutr Metab Cardiovasc Dis 26:387–392. https://doi.org/10.1016/j.numecd.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  46. Despa S (2002) Intracellular Na+ concentration is elevated in heart failure but Na/K pump function is unchanged. Circulation 105:2543–2548. https://doi.org/10.1161/01.CIR.0000016701.85760.97

    Article  CAS  PubMed  Google Scholar 

  47. Baartscheer A, Schumacher CA, Wust RCI et al (2017) Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 60:568–573. https://doi.org/10.1007/s00125-016-4134-x

    Article  CAS  PubMed  Google Scholar 

  48. Packer M, Anker SD, Butler J, Filippatos G, Zannad F (2017) Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol 2:1025–1029. https://doi.org/10.1001/jamacardio.2017.2275

    Article  PubMed  Google Scholar 

  49. Neeland IJ, McGuire DK, Chilton R et al (2016) Empagliflozin reduces body weight and indices of adipose distribution in patients with type 2 diabetes mellitus. Diab Vasc Dis Res 13:119–126. https://doi.org/10.1177/1479164115616901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Heerspink HJL, Perkins BA, Fitchett DH, Husain M, Cherney DZI (2016) Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134:752–772. https://doi.org/10.1161/CIRCULATIONAHA.116.021887

    Article  CAS  PubMed  Google Scholar 

  51. Hirshberg B, Raz I (2011) Impact of the U.S. Food and Drug Administration cardiovascular assessment requirements on the development of novel antidiabetes drugs. Diabetes Care 34:S101–S106. https://doi.org/10.2337/dc11-s202

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, EMPA-REG OUTCOME® trial investigators (2016) Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME(R) trial. Eur Heart J 37:1526–1534. https://doi.org/10.1093/eurheartj/ehv728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kosiborod M, Cavender MA, Fu AZ, Wilding JP, Khunti K, Holl RW, Norhammar A, Birkeland KI, Jørgensen ME, Thuresson M, Arya N, Bodegård J, Hammar N, Fenici P, CVD-REAL Investigators and Study Group* (2017) Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs clinical perspective: the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors). Circulation 136:249–259. https://doi.org/10.1161/CIRCULATIONAHA.117.029190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wanner C, Inzucchi SE, Zinman B (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:1801–1802. https://doi.org/10.1056/NEJMc1611290

    Article  PubMed  Google Scholar 

  55. Januzzi JL, Butler J, Jarolim P et al (2017) Effects of canagliflozin on cardiovascular biomarkers in older adults with type 2 diabetes. J Am Coll Cardiol 70:704–712. https://doi.org/10.1016/j.jacc.2017.06.016

    Article  CAS  PubMed  Google Scholar 

  56. Verma S, Garg A, Yan AT, Gupta AK, al-Omran M, Sabongui A, Teoh H, Mazer CD, Connelly KA (2016) Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: an important clue to the EMPA-REG OUTCOME trial? Diabetes Care 39:e212–e213. https://doi.org/10.2337/dc16-1312

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquim Silva Custodio Jr.

Ethics declarations

Conflict of interest

J.S. Custodio Jr. has received lecture fees from AstraZeneca, Boehringer Ingelheim, Janssen, and Eli Lilly. A.R. Duraes, M. Abreu, N. Albuquerque Rocha, and L. Roever have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Custodio, J.S., Duraes, A.R., Abreu, M. et al. SGLT2 inhibition and heart failure—current concepts. Heart Fail Rev 23, 409–418 (2018). https://doi.org/10.1007/s10741-018-9703-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-018-9703-2

Keywords

Navigation