Skip to main content

Advertisement

Log in

Fam20C overexpression in odontoblasts regulates dentin formation and odontoblast differentiation

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

FAM20C phosphorylates secretory proteins at S-x-E/pS motifs, and previous studies of Fam20C-dificient mice revealed that FAM20C played essential roles in bone and tooth formation. Inactivation of FAM20C in mice led to hypophosphatemia that masks direct effect of FAM20C in these tissues, and consequently the direct role of FAM20C remains unknown. Our previous study reported that osteoblast/odontoblast-specific Fam20C transgenic (Fam20C-Tg) mice had normal serum phosphate levels and that osteoblastic FAM20C-mediated phosphorylation regulated bone formation and resorption. Here, we investigated the direct role of FAM20C in dentin using Fam20C-Tg mice. The tooth of Fam20C-Tg mice contained numerous highly phosphorylated proteins, including SIBLINGs, compared to that of wild-type mice. In Fam20C-Tg mice, coronal dentin volume decreased and mineral density unchanged at early age, while the volume unchanged and the mineral density elevated at maturity. In these mice, radicular dentin volume and mineral density decreased at all ages, and histologically, the radicular dentin had wider predentin and abnormal apical-side dentin with embedded cells and argyrophilic canaliculi. Immunohistochemical analyses revealed that abnormal apical-side dentin had bone and dentin matrix properties accompanied with osteoblast-lineage cells. Further, in Fam20C-Tg mice, DSPP content which is important for dentin formation, was reduced in dentin, especially radicular dentin, which might lead to defects mainly in radicular dentin. Renal subcapsular transplantations of tooth germ revealed that newly formed radicular dentin replicated apical abnormal dentin of Fam20C-Tg mice, corroborating that FAM20C overexpression indeed caused the abnormal dentin. Our findings indicate that odontoblastic FAM20C-mediated phosphorylation in the tooth regulates dentin formation and odontoblast differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  • Acevedo AC, Poulter JA, Alves PG, de Lima CL, Castro LC, Yamaguti PM, Paula LM, Parry DA, Logan CV, Smith CE, Johnson CA, Inglehearn CF, Mighell AJ (2015) Variability of systemic and oro-dental phenotype in two families with non-lethal Raine syndrome with FAM20C mutations. BMC Med Genet 16:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Hashimi N, Lafont AG, Delgado S, Kawasaki K, Sire JY (2010) The enamelin genes in lizard, crocodile, and frog and the pseudogene in the chicken provide new insights on enamelin evolution in tetrapods. Mol Biol Evol 27:2078–2094

    Article  CAS  PubMed  Google Scholar 

  • Butler WT, Bhown M, DiMuzio MT, Cothran WC, Linde A (1983) Multiple forms of rat dentin phosphoproteins. Arch Biochem Biophys 225:178–186

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F, Gasse B, Sire JY (2015) Evolutionary analysis of selective constraints identifies ameloblastin (AMBN) as a potential candidate for amelogenesis imperfecta. BMC Evol Biol 15:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshpande AS, Fang PA, Zhang X, Jayaraman T, Sfeir C, Beniash E (2011) Primary structure and phosphorylation of dentin matrix protein 1 (DMP1) and dentin phosphophoryn (DPP) uniquely determine their role in biomineralization. Biomacromolecules 12:2933–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faundes V, Castillo-Taucher S, Gonzalez-Hormazabal P, Chandler K, Crosby A, Chioza B (2014) Raine syndrome: an overview. Eur J Med Genet 57:536–542

    Article  PubMed  Google Scholar 

  • Feng JQ, Luan X, Wallace J, Jing D, Ohshima T, Kulkarni AB, D’Souza RN, Kozak CA, MacDougall M (1998) Genomic organization, chromosomal mapping, and promoter analysis of the mouse dentin sialophosphoprotein (dspp) gene, which codes for both dentin sialoprotein and dentin phosphoprotein. J Biol Chem 273:9457–9464

    Article  CAS  PubMed  Google Scholar 

  • George A, Veis A (2008) Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev 108:4670–4693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao J, Narayanan K, Muni T, Ramachandran A, George A (2007) Dentin matrix protein 4, a novel secretory calcium-binding protein that modulates odontoblast differentiation. J Biol Chem 282:15357–15365

    Article  CAS  PubMed  Google Scholar 

  • Hirose K, Ishimoto T, Usami Y, Sato S, Oya K, Nakano T, Komori T, Toyosawa S (2020) Overexpression of Fam20C in osteoblast in vivo leads to increased cortical bone formation and osteoclastic bone resorption. Bone 138:115414

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa HO, Xu A, Ogura E, Manning G, Irvine KD (2012) The Raine syndrome protein FAM20C is a Golgi kinase that phosphorylates bio-mineralization proteins. PLoS ONE 7:e42988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komori T (2010) Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res 339:189–195

    Article  CAS  PubMed  Google Scholar 

  • Komori T (2020) Molecular mechanism of Runx2-dependent bone development. Mol Cells 43:168–175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kusuzaki K, Kageyama N, Shinjo H, Takeshita H, Murata H, Hashiguchi S, Ashihara T, Hirasawa Y (2000) Development of bone canaliculi during bone repair. Bone 27:655–659

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Yi B, Feng Z, Meng R, Tian C, Xu Q (2018) FAM20C could be targeted by TET1 to promote odontoblastic differentiation potential of human dental pulp cells. Cell Prolif 51:e12426

    Article  PubMed  Google Scholar 

  • Lim D, Wu KC, Lee A, Saunders TL, Ritchie HH (2021) DSPP dosage affects tooth development and dentin mineralization. PLoS ONE 16:e0250429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Zhang H, Liu C, Wang X, Chen L, Qin C (2014) Inactivation of Fam20C in cells expressing type I collagen causes periodontal disease in mice. PLoS One 9:e114396

  • Liu P, Ma S, Zhang H, Liu C, Lu Y, Chen L, Qin C (2017) Specific ablation of mouse Fam20C in cells expressing type I collagen leads to skeletal defects and hypophosphatemia. Sci Rep 7:3590

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C, Zhang H, Jani P, Wang X, Lu Y, Li N, Xiao J, Qin C (2018a) FAM20C regulates osteoblast behaviors and intracellular signaling pathways in a cell-autonomous manner. J Cell Physiol 233:3476–3486

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zhou N, Wang Y, Zhang H, Jani P, Wang X, Lu Y, Li N, Xiao J, Qin C (2018b) Abrogation of Fam20c altered cell behaviors and BMP signaling of immortalized dental mesenchymal cells. Exp Cell Res 363:188–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Saiyin W, Xie X, Mao L, Li L (2020) Ablation of Fam20c causes amelogenesis imperfecta via inhibiting smad dependent BMP signaling pathway. Biol Direct 15:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki T, Kanatani N, Rokutanda S, Yoshida C, Toyosawa S, Nakamura R, Takada S, Komori T (2008) Inhibition of the terminal differentiation of odontoblasts and their transdifferentiation into osteoblasts in Runx2 transgenic mice. Arch Histol Cytol 71:131–146

    Article  CAS  PubMed  Google Scholar 

  • Nagata K, Kawakami T, Kurata Y, Kimura Y, Suzuki Y, Nagata T, Sakuma Y, Miyagi Y, Hirano H (2015) Augmentation of multiple protein kinase activities associated with secondary imatinib resistance in gastrointestinal stromal tumors as revealed by quantitative phosphoproteome analysis. J Proteomics 115:132–142

    Article  CAS  PubMed  Google Scholar 

  • Oya K, Ishida K, Nishida T, Sato S, Kishino M, Hirose K, Ogawa Y, Ikebe K, Takeshige F, Yasuda H, Komori T, Toyosawa S (2017) Immunohistochemical analysis of dentin matrix protein 1 (Dmp1) phosphorylation by Fam20C in bone: implications for the induction of biomineralization. Histochem Cell Biol 147:341–351

    Article  CAS  PubMed  Google Scholar 

  • Prasad M, Butler WT, Qin C (2010) Dentin sialophosphoprotein in biomineralization. Connect Tissue Res 51:404–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin C, Baba O, Butler WT (2004) Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med 15:126–136

    Article  CAS  PubMed  Google Scholar 

  • Raine J, Winter RM, Davey A, Tucker SM (1989) Unknown syndrome: microcephaly, hypoplastic nose, exophthalmos, gum hyperplasia, cleft palate, low set ears, and osteosclerosis. J Med Genet 26:786–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roach PJ (1991) Multisite and hierarchal protein phosphorylation. J Biol Chem 266:14139–14142

    Article  CAS  PubMed  Google Scholar 

  • Simpson MA, Hsu R, Keir LS, Hao J, Sivapalan G, Ernst LM, Zackai EH, Al-Gazali LI, Hulskamp G, Kingston HM, Prescott TE, Ion A, Patton MA, Murday V, George A, Crosby AH (2007) Mutations in FAM20C are associated with lethal osteosclerotic bone dysplasia (Raine syndrome), highlighting a crucial molecule in bone development. Am J Hum Genet 81:906–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreenath T, Thyagarajan T, Hall B, Longenecker G, D’Souza R, Hong S, Wright JT, MacDougall M, Sauk J, Kulkarni AB (2003) Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. J Biol Chem 278:24874–24880

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Haruyama N, Nishimura F, Kulkarni AB (2012) Dentin sialophosphoprotein and dentin matrix protein-1: two highly phosphorylated proteins in mineralized tissues. Arch Oral Biol 57:1165–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, Xiao J, Grishin NV, Dixon JE (2012) Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science 336:1150–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagliabracci VS, Pinna LA, Dixon JE (2013) Secreted protein kinases. Trends Biochem Sci 38:121–130

    Article  CAS  PubMed  Google Scholar 

  • Tagliabracci VS, Wiley SE, Guo X, Kinch LN, Durrant E, Wen J, Xiao J, Cui J, Nguyen KB, Engel JL, Coon JJ, Grishin N, Pinna LA, Pagliarini DJ, Dixon JE (2015) A single kinase generates the majority of the secreted phosphoproteome. Cell 161:1619–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi Y, Nagai H, Sasaki S (1988) Difference in noncollagenous matrix composition between crown and root dentin of bovine incisor. Calcif Tissue Int 42:97–103

    Article  CAS  PubMed  Google Scholar 

  • Toyosawa S, Shintani S, Fujiwara T, Ooshima T, Sato A, Ijuhin N, Komori T (2001) Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. J Bone Miner Res 16:2017–2026

    Article  CAS  PubMed  Google Scholar 

  • Vogel P, Hansen GM, Read RW, Vance RB, Thiel M, Liu J, Wronski TJ, Smith DD, Jeter-Jones S, Brommage R (2012) Amelogenesis imperfecta and other biomineralization defects in Fam20a and Fam20c null mice. Vet Pathol 49:998–1017

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Hao J, Xie Y, Sun Y, Hernandez B, Yamoah AK, Prasad M, Zhu Q, Feng JQ, Qin C (2010) Expression of FAM20C in the osteogenesis and odontogenesis of mouse. J Histochem Cytochem 58:957–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang S, Lu Y, Gibson MP, Liu Y, Yuan B, Feng JQ, Qin C (2012) FAM20C plays an essential role in the formation of murine teeth. J Biol Chem 287:35934–35942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Jung J, Liu Y, Yuan B, Lu Y, Feng JQ, Qin C (2013) The specific role of FAM20C in amelogenesis. J Dent Res 92:995–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang J, Liu Y, Yuan B, Ruest LB, Feng JQ, Qin C (2015) The specific role of FAM20C in dentinogenesis. J Dent Res 94:330–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Ma S, Li C, Liu P, Wang H, Chen L, Qin C (2014) Expression of small integrin-binding LIgand N-linked glycoproteins (SIBLINGs) in the reparative dentin of rat molars. Dent Traumatol 30:285–295

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhao J, Li C, Gao S, Qiu C, Liu P, Wu G, Qiang B, Lo WH, Shen Y (2001) DSPP mutation in dentinogenesis imperfecta Shields type II. Nat Genet 27:151–152

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xie X, Liu P, Liang T, Lu Y, Qin C (2018) Transgenic expression of dentin phosphoprotein (DPP) partially rescued the dentin defects of DSPP-null mice. PLoS ONE 13:e0195854

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Li L, Kesterke MJ, Lu Y, Qin C (2019) High-phosphate Diet improved the skeletal development of Fam20c-Deficient mice. Cells Tissues Organs 208:25–36

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xu Q, Lu Y, Qin C (2021) Effect of high phosphate diet on the formation of dentin in Fam20c-deficient mice. Eur J Oral Sci 129:e12795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Hosoya A, Kurita H, Hu T, Hiraga T, Ninomiya T, Yoshiba K, Yoshiba N, Takahashi M, Kurashina K, Ozawa H, Nakamura H (2007) Immunohistochemical study of hard tissue formation in the rat pulp cavity after tooth replantation. Arch Oral Biol 52:945–953

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The phosphoproteomic analysis was performed by Medical ProteoScope (Yokohama, Japan), and the authors would like to acknowledge the support of the staff there.

Funding

This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers JP17H04368, JP26670801, JP19K18944, and JP21K16930.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this work, and reviewed and approved the manuscript for submission. KN and KH contributed equally to this work. KN: Investigation, Data Curation, Visualization. KH: Methodology, Validation, Investigation, Resources, Data Curation, Writing—Original Draft, Writing—Review and Editing, Visualization, Supervision, Project Administration, Funding Acquisition. YU: Resources. KH: Investigation, Resources, Supervision. RA: Investigation, Visualization. NU: Supervision. TK: Methodology, Supervision. ST: Conceptualization, Methodology, Validation, Resources, Data Curation, Writing—Original Draft, Writing—Review and Editing, Visualization, Supervision, Project Administration, Funding Acquisition.

Corresponding author

Correspondence to Satoru Toyosawa.

Ethics declarations

Conflict of interest

All the authors have no relevant financial or non-financial interests to disclose.

Ethical approval

All animal experiments were reviewed and approved by the Intramural Animal Use and Care Committee of Osaka University Graduate School of Dentistry (Permit Number R-01-006-0).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naniwa, K., Hirose, K., Usami, Y. et al. Fam20C overexpression in odontoblasts regulates dentin formation and odontoblast differentiation. J Mol Histol 54, 329–347 (2023). https://doi.org/10.1007/s10735-023-10123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-023-10123-y

Keywords

Navigation