Skip to main content

Advertisement

Log in

Immunolocalization patterns of cytokeratins during salivary acinar cell development in mice

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Embryonic development of the mouse salivary glands begins with epithelial thickening and continues with sequential changes from the pre-bud to terminal bud stages. After birth, morphogenesis proceeds, and the glands develop into a highly branched epithelial structure that terminates with saliva-producing acinar cells at the adult stage. Acinar cells derived from the epithelium are differentiated into serous, mucous, and seromucous types. During differentiation, cytokeratins, intermediate filaments found in most epithelial cells, play vital roles. Although the localization patterns and developmental roles of cytokeratins in different epithelial organs, including the mammary glands, circumvallate papilla, and sweat glands, have been well studied, their stage-specific localization and morphogenetic roles during salivary gland development have yet to be elucidated. Therefore, the aim of this study was to determine the stage and acinar cell type-specific localization pattern of cytokeratins 4, 5, 7, 8, 13, 14, 18, and 19 in the major salivary glands (submandibular, sublingual, and parotid glands) of the mouse at the E15.5, PN0, PN10, and adult stages. In addition, cell physiology, including cell proliferation, was examined during development via immunostaining for Ki67 to understand the cellular mechanisms that govern acinar cell differentiation during salivary gland morphogenesis. The distinct localization patterns of cytokeratins in conjunction with cell physiology will reveal the roles of epithelial cells in salivary gland formation during the differentiation of serous, mucous or seromucous salivary glands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alam H, Sehgal L, Kundu ST, Dalal SN, Vaidya MM (2011) Novel function of keratins 5 and 14 in proliferation and differentiation of stratified epithelial cells. Mol Biol Cell 22(21):4068–4078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amano O, Mizobe K, Bando Y, Sakiyama K (2012) Anatomy and histology of rodent and human major salivary glands: overview of the Japan salivary gland society-sponsored workshop. Acta Histochem Cytochem 45(5):241–250

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Guldiken N, Spurny M, Mohammed HH, Haybaeck J, Pollheimer MH, Fickert P, Gassler N, Jeon MK, Trautwein C, Strnad P (2015) Loss of keratin 19 favours the development of cholestatic liver disease through decreased ductular reaction. J Pathol 237(3):343–354

    Article  CAS  PubMed  Google Scholar 

  • Chibly AM, Querin L, Harris Z, Limesand KH (2014) Label-retaining cells in the adult murine salivary glands possess characteristics of adult progenitor cells. PLoS ONE 9(9):e107893. https://doi.org/10.1371/journal.pone.0107893

    Article  PubMed  PubMed Central  Google Scholar 

  • de Paula F, Teshima THN, Hsieh R, Souza MM, Coutinho-Camillo CM, Nico MMS, Lourenco SV (2017) The expression of water channel proteins during human salivary gland development: a topographic study of aquaporins 1, 3 and 5. J Mol Histol. https://doi.org/10.1007/s10735-017-9731-6

    PubMed  PubMed Central  Google Scholar 

  • Hafner M, Wenk J, Nenci A, Pasparakis M, Scharffetter-Kochanek K, Smyth N, Peters T, Kess D, Holtkotter O, Shephard P, Kudlow JE, Smola H, Haase I, Schippers A, Krieg T, Muller W (2004) Keratin 14 cre transgenic mice authenticate keratin 14 as an oocyte-expressed protein. Genesis 38(4):176–181

    Article  CAS  PubMed  Google Scholar 

  • Hai B, Yang Z, Millar SE, Choi YS, Taketo MM, Nagy A, Liu F (2010) Wnt/beta-catenin signaling regulates postnatal development and regeneration of the salivary gland. Stem Cells Dev 19(11):1793–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman MP (2007) Laminin alpha5 is necessary for submandibular gland epithelial morphogenesis and influences FGFR expression through beta1 integrin signaling. Dev Biol 308(1):15–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosoya A, Kwak S, Kim EJ, Lunny DP, Lane EB, Cho SW, Jung HS (2010) Immunohistochemical localization of cytokeratins in the junctional region of ectoderm and endoderm.Anat. Rec 293(11):1864–1872

    Google Scholar 

  • Iwasaki S, Aoyagi H, Yoshizawa H (2003) Immunohistochemical detection of the expression of keratin 14 in the lingual epithelium of rats during the morphogenesis of filiform papillae. Arch Oral Biol 48(8):605–613

    Article  CAS  PubMed  Google Scholar 

  • Jain R, Fischer S, Serra S, Chetty R (2010) The use of cytokeratin 19 (CK19) immunohistochemistry in lesions of the pancreas, gastrointestinal tract, and liver. Appl Immunohistochem Mol Morphol 18(1):9–15

    Article  CAS  PubMed  Google Scholar 

  • Jaskoll T, Melnick M (1999) Submandibular gland morphogenesis: stage-specific expression of TGF-alpha/EGF, IGF, TGF-beta, TNF, and IL-6 signal transduction in normal embryonic mice and the phenotypic effects of TGFbeta2, TGF-beta3, and EGF-r null mutations. Anat Rec 256(3):252–268

    Article  CAS  PubMed  Google Scholar 

  • Jaskoll T, Zhou YM, Chai Y, Makarenkova HP, Collinson JM, West JD, Hajihosseini MK, Lee J, Melnick M (2002) Embryonic submandibular gland morphogenesis: stage-specific protein localization of FGFs, BMPs, Pax6 and Pax9 in normal mice and abnormal SMG phenotypes in FgfR2-IIIc(+/Delta), BMP7(-/-) and Pax6(-/-) mice. Cells Tissues Organs 170:83–89

    Article  CAS  PubMed  Google Scholar 

  • Jaskoll T, Witcher D, Toreno L, Bringas P, Moon AM, Melnick M (2004) FGF8 dose-dependent regulation of embryonic submandibular salivary gland morphogenesis. Dev Biol 268:457–469

    Article  CAS  PubMed  Google Scholar 

  • Jaskoll T, Abichaker G, Witcher D, Sala FG, Bellusci S, Hajihosseini MK, Melnick M (2005) FGF10/FGFR2b signaling plays essential roles during in vivo embryonic submandibular salivary gland morphogenesis. BMC Dev Biol 5:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung JK, Jung HI, Neupane S, Kim KR, KIM JY, Yamamoto H, Cho SW, Lee Y, Shin HI, Sohn WJ, Kim JY (2017) Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem 119(1):92–98

    Article  CAS  PubMed  Google Scholar 

  • Kalabis J, Wong GS, Vega ME, Natsuizaka M, Robertson ES, Herlyn M, Nakagawa H, Rustgi AK (2012) Isolation and characterization of mouse and human esophageal epithelial cells in 3D organotypic culture. Nat Protoc 7(2):235–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Cho SW, Lee MJ, Hwang HJ, Lee JM, Lee SI, Muramatsu T, Shimono M, Jung HS (2005) Inhibition of connexin 43 alters Shh and Bmp-2 expression patterns in embryonic mouse tongue. Cell Tissue Res 320(3):409–415

    Article  CAS  PubMed  Google Scholar 

  • Knosp WM, Knox SM, Hoffman MP (2012) Salivary gland organogenesis. WIREs Dev Biol 1:69–82

    Article  CAS  Google Scholar 

  • Knox SM, Lombaert IM, Reed X, Vitale-Cross L, Gutkind JS, Hoffman MP (2010) Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis. Science 329(5999):1645–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MJ, Kim JY, Lee SI, Sasaki H, Lunny DP, Lane EB, Jung HS (2006) Association of Shh and Ptc with keratin localization in the initiation of the formation of circumvallate papilla and von Ebner’s gland. Cell Tissue Res 325(2):253–261

    Article  CAS  PubMed  Google Scholar 

  • Lourenco SV, Coutinho-Camillo CM, Buim ME, Uyekita SH, Soares FA (2007) Human salivary gland branching morphogenesis: morphological localization of claudins and its parallel relation with developmental stages revealed by expression of cytoskeleton and secretion markers. Histochem Cell Biol 128(4):361–369

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Hesse M, Peters B, Magin TM (2005) Type II keratins precede type I keratins during early embryonic development. Eur J Cell Biol 84(8):709–718

    Article  CAS  PubMed  Google Scholar 

  • Mbiene JP, Roberts JD (2003) Distribution of keratin 8-containing cell clusters in mouse embryonic tongue: evidence for a prepattern for taste bud development. J Comp Neurol 457(2):111–122

    Article  PubMed  Google Scholar 

  • Nelson WG, Sun TT (1983) The 50- and 58-kdalton keratin classes as molecular markers for stratified squamous epithelia: cell culture studies. J Cell Biol 97(1):244–251

    Article  CAS  PubMed  Google Scholar 

  • Nelson DA, Manhardt C, Kamath V, Sui Y, Santamaria-Pang A, Can A, Bello M, Corwin A, Dinn SR, Lazare M, Gervais EM, Sequeira SJ, Peters SB, Ginty F, Gerdes MJ, Larsen M (2013) Quantitative single cell analysis of cell population dynamics during submandibular salivary gland development and differentiation. Biol Open 2(5):439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ness SL, Edelmann W, Jenkins TD, Liedtke W, Rustgi AK, Kucherlapati R (1998) Mouse keratin 4 is necessary for internal epithelial integrity. J Biol Chem 273(37):23904–23911

    Article  CAS  PubMed  Google Scholar 

  • Neupane S, Sohn WJ, Gwon GJ, Kim KR, Lee S, An CH, Suh JY, Shin HI, Yamamoto H, Cho SW, Lee Y, Kim JY (2015) The role of APCDD1 in epithelial rearrangement in tooth morphogenesis. Histochem Cell Biol 144(4):377–387

    Article  CAS  PubMed  Google Scholar 

  • Ogawa Y, Kishino M, Atsumi Y, Kimoto M, Fukuda Y, Ishida T, Ijuhin N (2003) Plasmacytoid cells in salivary-gland pleomorphic adenomas: evidence of luminal cell differentiation. Virchows Arch 443(5):625–634

    Article  PubMed  Google Scholar 

  • Olson GE, Winfrey VP, Blaeuer GL, Palisano JR, NagDas SK (2002) Stage-specific expression of the intermediate filament protein cytokeratin 13 in luminal epithelial cells of secretory phase human endometrium and peri-implantation stage rabbit endometrium. Biol Reprod 66(4):1006–1015

    Article  CAS  PubMed  Google Scholar 

  • Omary MB, Ku NO, Strnad P, Hanada S (2009) Toward unraveling the complexity of simple epithelial keratins in human disease. J Clin Invest 119(7):1794–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owens DW, Lane EB (2003) The quest for the function of simple epithelial keratins. Bioessays 25(8):748–758

    Article  CAS  PubMed  Google Scholar 

  • Paku S, Dezso K, Kopper L, Nagy P (2005) Immunohistochemical analysis of cytokeratin 7 expression in resting and proliferating biliary structures of rat liver. Hepatology 42(4):863–870

    Article  PubMed  Google Scholar 

  • Patel VN, Knox SM, Likar KM, Lathrop CA, Hossain R, Eftekhari S, Whitelock JM, Elkin M, Vlodavsky I, Hoffman MP (2007) Heparanase cleavage of perlecan heparin sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development 134:4177–4186

    Article  CAS  PubMed  Google Scholar 

  • Raimondi AR, Vitale-Cross L, Amornphimoltham P, Gutkind JS, Molinolo A (2006) Rapid development of salivary gland carcinomas upon conditional expression of K-ras driven by the cytokeratin 5 promoter. Am J Pathol 168(5):1654–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebustini IT, Patel VN, Stewart JS, Layvey A, Georges- Labouesse E, Miner JH, Hoffman MP (2007) Laminin alpha5 is necessary for submandibular gland epithelial morphogenesis and influences FGFR expression through beta1 integrin signaling. Dev Biol 308:15–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riau AK, Barathi VA, Beuerman RW (2008) Mucocutaneous junction of eyelid and lip: a study of the transition zone using epithelial cell markers. Curr Eye Res 33(11):912–922

    Article  CAS  PubMed  Google Scholar 

  • Shetty S, Gokul S (2012) Keratinization and its disorders. Oman Med J 27(5):348–357

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimizu O, Yasumitsu T, Shiratsuchi H, Oka S, Watanabe T, Saito T, Yonehara Y (2015) Immunolocalization of FGF-2, -7, -8, -10 and FGFR-1–4 during regeneration of the rat submandibular gland. J Mol Histol 46(4–5):421–429

    Article  CAS  PubMed  Google Scholar 

  • Sohn WJ, Gwon GJ, Kim HS, Neupane S, Cho SJ, Lee JH, Yamamoto H, Choi JY, An CH, Lee Y, Shin HI, Lee S, Kim JY (2015) Mesenchymal signaling in dorsoventral differentiation of palatal epithelium. Cell Tissue Res 362(3):541–556

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Yuan Y, Li A, Li B, Dai X (2010) Cytokeratin expression during mouse embryonic and early postnatal mammary gland development. Histochem cell Biol 133:213–221

    Article  CAS  PubMed  Google Scholar 

  • Teshima TH, Ianez RF, Coutinho-Camillo CM, Buim ME, Soares FA, Lourenço SV (2011) Development of human minor salivary glands: expression of mucins according to stage of morphogenesis. J Anat 219(3):410–417

    Article  PubMed  PubMed Central  Google Scholar 

  • Teshima TH, Wells KL, Lourenco SV, Tucker AS (2016) Apoptosis in early salivary gland morphogenesis and lumen formation. J Dent Res 95:277–283

    Article  CAS  PubMed  Google Scholar 

  • Toh H, Rittman G, Mackenzie IC (1993) Keratin expression in taste bud cells of the circumvallate and foliate papillae of adult mice. Epithelial Cell Biol 2(3):126–133

    CAS  PubMed  Google Scholar 

  • Tucker AS (2007) Salivary gland development. Semin Cell Dev Biol 18:237–244

    Article  CAS  PubMed  Google Scholar 

  • Wells KL, Patel N (2010) Lumen formation in salivary gland development. Front Oral Biol 14:78–89

    Article  CAS  PubMed  Google Scholar 

  • Wells KL, Mou C, Headon DJ, Tucker AS (2010) Recombinant EDA or sonic hedgehog rescue the branching defect in ectodysplasin a pathway mutant salivary glands in vitro. Dev Dyn 239:2674–2684

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Yao B, Han Y, Shang T, Gao D, Yang S, Ma K, Huang S, Fu X (2015) Cytokeratin expression at different stages in sweat gland development in C57BL/6J mice. Int J Low Extreme Wounds 14(4):365–371

    Article  CAS  Google Scholar 

  • Yamamoto M, Nakata H, Kumchantuek T, Sakulsak N, Iseki S (2016) Immunohistochemical localization of keratin 5 in the submandibular gland in adult and postnatal developing mice. Histochem Cell Biol 145(3):327–339

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Murakami K, Sakuda K, Yoshinaga K (2014) Cytokeratin localization and basal cell differentiation in the epididymal epithelium during post natal development of the mouse. Okajimas Folia Anat Jpn 91(4):83–89

    Article  PubMed  Google Scholar 

  • Yoshida K, Sato K, Tonogi M, Tanaka Y, Yamane GY, Katakura A (2015) Expression of cytokeratin 14 and 19 in process of oral carcinogenesis. Bull Tokyo Dent Coll 56(2):105–111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Korean government (grant no. NRF-2016R1D1A1B03934494).

Author information

Authors and Affiliations

Authors

Contributions

NA contributed to conception, data acquisition, analysis and interpretation, drafted and revised the manuscript; JR contributed to the analysis and interpretation of data; SN contributed to the analysis and quantification of data; JHJ, JKJ, and WJS contributed to immunoblotting and critical revision of the manuscript; JYKs contributed to conception, design, analysis and data interpretation and critically revised the manuscript.

Corresponding authors

Correspondence to Jae-Young Kim or Ji-Youn Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10735_2017_9742_MOESM1_ESM.tif

Supplementary figure 1. Immunolocalization pattern of alpha smooth muscle actin in developing SMG (a-c), SLG (d-f) and PG (g-i). PN0 SMG showing alpha SMA localization around the terminal tubules (a). PN10 SMG showing alpha SMA localization in the duct and acinus (b). Adult SMG with alpha SMA localized around acini and GCT (c). PN0 SLG with alpha SMA localization around the terminal tubules (d). PN10 SLG with localization of alpha SMA in the duct and acini (e). Adult SLG showing localization of alpha SMA around the acini and duct (f). PN0 PG with alpha SMA in the terminal epithelial bud (g). PN10 PG with alpha SMA localization in the duct and acini (h). Adult PG showing localization of alpha SMA around the duct and acini (i). ED, excretory duct; GCT, granular convoluted tubules. Scale bars, 50 μm. (TIF 8011 KB)

10735_2017_9742_MOESM2_ESM.tif

Supplementary figure 2. Immunoblot of cytokeratins used in the study. Lane 1, observed bands of CK4, CK5, CK8 and CK18 after immunoblot of the protein from parotid gland lysate. Lane 2, observed bands of CK7, CK13, CK14 and CK19 after immunoblot of the protein from sublingual gland lysate. (TIF 213 KB)

Supplementary material 3 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, N., Neupane, S., Roh, J. et al. Immunolocalization patterns of cytokeratins during salivary acinar cell development in mice. J Mol Hist 49, 1–15 (2018). https://doi.org/10.1007/s10735-017-9742-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-017-9742-3

Keywords

Navigation