Skip to main content

Advertisement

Log in

Histological evidence that metformin reverses the adverse effects of diabetes on orthodontic tooth movement in rats

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

This study evaluated the effects of metformin on orthodontic tooth movement in a rat model of type 2 diabetes mellitus. Rats were fed a high-fat diet for 4 weeks to induce fat accumulation and insulin resistance, and then injected with a low dose of streptozotocin (35 mg/kg) intraperitoneally to induce type 2 diabetes. An orthodontic appliance was placed in normoglycemic, type 2 diabetes, and type 2 diabetes with metformin-administrated rats. After 14 days, type 2 diabetes rats exhibited greater orthodontic tooth movement and had a higher number of tartrate-resistant acid phosphatase-positive osteoclasts, stronger cathepsin K expression, and weaker alkaline phosphatase immunostaining than normoglycemic rats. Metformin administration resulted in normalization of osteoclast numbers, cathepsin K immunostaining, and of tooth movement as well as partly recovery of alkaline phosphatase expression in diabetic rats. Metformin also reduced sclerostin expression and improved the immunolocalization of dentin matrix protein 1 in osteocytes of type 2 diabetes rats. These results suggest that metformin administration reversed the adverse effects of diabetes on orthodontic tooth movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atkins GJ, Rowe PS, Lim HP, Welldon KJ, Ormsby R, Wijenayaka AR, Zelenchuk L, Evdokiou A, Findlay DM (2011) Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism. J Bone Miner Res 26:1425–1436. doi:10.1002/jbmr.345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensch L, Braem M, Van Acker K, Willems G (2003) Orthodontic treatment considerations in patients with diabetes mellitus. Am J Orthod Dentofac Orthoped 123:74–78. doi:10.1067/mod.2003.53

    Article  Google Scholar 

  • Botolin S, Faugere MC, Malluche H, Orth M, Meyer R, McCabe LR (2005) Increased bone adiposity and peroxisomal proliferator-activated receptor-gamma2 expression in type I diabetic mice. Endocrinology 146:3622–3631. doi:10.1210/en.2004-1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braga SM, Taddei SR, Andrade I Jr., Queiroz-Junior CM, Garlet GP, Repeke CE, Teixeira MM, da Silva TA (2011) Effect of diabetes on orthodontic tooth movement in a mouse model. Eur J Oral Sci 119:7–14. doi:10.1111/j.1600-0722.2010.00793.x

    Article  PubMed  Google Scholar 

  • Cortizo AM, Sedlinsky C, McCarthy AD, Blanco A, Schurman L (2006) Osteogenic actions of the anti-diabetic drug metformin on osteoblasts in culture. Eur J Pharmacol 536:38–46. doi:10.1016/j.ejphar.2006.02.030

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Li J, Wang W, Han X, Du J, Sun J, Feng W, Liu B, Liu H, Amizuka N, Li M (2016) The effect of calcitriol on high mobility group box 1 expression in periodontal ligament cells during orthodontic tooth movement in rats. J Mol Histol 47:221–228. doi:10.1007/s10735-016-9669-0

    Article  CAS  PubMed  Google Scholar 

  • Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M, Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378:31–40. doi:10.1016/S0140-6736(11)60679-X

    Article  CAS  PubMed  Google Scholar 

  • Fu HD, Wang BK, Wan ZQ, Lin H, Chang ML, Han GL (2016) Wnt5a mediated canonical Wnt signaling pathway activation in orthodontic tooth movement: possible role in the tension force-induced bone formation. J Mol Histol 47:455–466. doi:10.1007/s10735-016-9687-y

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Xue J, Li X, Jia Y, Hu J (2008) Metformin regulates osteoblast and adipocyte differentiation of rat mesenchymal stem cells. J Pharm Pharmacol 60:1695–1700. doi:10.1211/jpp.60/12.0017

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Li Y, Xue J, Jia Y, Hu J (2010) Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats. Eur J Pharmacol 635:231–236. doi:10.1016/j.ejphar.2010.02.051

    Article  CAS  PubMed  Google Scholar 

  • Giglio MJ, Lama MA (2001) Effect of experimental diabetes on mandible growth in rats. Eur J Oral Sci 109:193–197

    Article  CAS  PubMed  Google Scholar 

  • Gluhak-Heinrich J, Ye L, Bonewald LF, Feng JQ, MacDougall M, Harris SE, Pavlin D (2003) Mechanical loading stimulates dentin matrix protein 1 (DMP1) expression in osteocytes in vivo. J Bone Miner Res 18:807–817. doi:10.1359/jbmr.2003.18.5.807

    Article  CAS  PubMed  Google Scholar 

  • He H, Liu R, Desta T, Leone C, Gerstenfeld LC, Graves DT (2004) Diabetes causes decreased osteoclastogenesis, reduced bone formation, and enhanced apoptosis of osteoblastic cells in bacteria stimulated bone loss. Endocrinology 145:447–452. doi:10.1210/en.2003-1239

    Article  CAS  PubMed  Google Scholar 

  • Hie M, Shimono M, Fujii K, Tsukamoto I (2007) Increased cathepsin K and tartrate-resistant acid phosphatase expression in bone of streptozotocin-induced diabetic rats. Bone 41:1045–1050. doi:10.1016/j.bone.2007.08.030

    Article  CAS  PubMed  Google Scholar 

  • Huh S, Lee CY, Ohe JY, Lee JW, Choi BJ, Lee BS, Kwon YD (2015) Chronic maxillary sinusitis and diabetes related maxillary osteonecrosis: a case report. J Korean Assoc Oral Maxillofac Surg 41:332–337. doi:10.5125/jkaoms.2015.41.6.332

    Article  PubMed  PubMed Central  Google Scholar 

  • Inagaki Y, Hookway ES, Kashima TG, Munemoto M, Tanaka Y, Hassan AB, Oppermann U, Athanasou NA (2016) Sclerostin expression in bone tumours and tumour-like lesions. Histopathology. doi:10.1111/his.12953

    Google Scholar 

  • Jeyabalan J, Viollet B, Smitham P, Ellis SA, Zaman G, Bardin C, Goodship A, Roux JP, Pierre M, Chenu C (2013) The anti-diabetic drug metformin does not affect bone mass in vivo or fracture healing. Osteoporos Int 24:2659–2670. doi:10.1007/s00198-013-2371-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang F, Xia Z, Li S, Eckert G, Chen J (2015) Mechanical environment change in root, periodontal ligament, and alveolar bone in response to two canine retraction treatment strategies. Orthod Craniofac Res 18(Suppl 1):29–38. doi:10.1111/ocr.12076

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, Feng JQ, Bonewald LF, Kneissel M (2010) Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol 30:3071–3085. doi:10.1128/MCB.01428-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop 129(469):e461–e432. doi:10.1016/j.ajodo.2005.10.007

    Google Scholar 

  • Li M, Hasegawa T, Hogo H, Tatsumi S, Liu Z, Guo Y, Sasaki M, Tabata C, Yamamoto T, Ikeda K, Amizuka N (2013) Histological examination on osteoblastic activities in the alveolar bone of transgenic mice with induced ablation of osteocytes. Histol Histopathol 28:327–335

    PubMed  Google Scholar 

  • Li J, Feng W, Liu, Sun B, Han B, Du X, Sun J, Yimin J, Cui J, Guo J, Kudo J, Amizuka A, Li M (2015) Altered distribution of HMGB1 in the periodontal ligament of periostin-deficient mice subjected to Waldo’s orthodontic tooth movement. J Mol Histol 46:303–311. doi:10.1007/s10735-015-9619-2

    Article  PubMed  Google Scholar 

  • Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, Li Y, Feng G, Gao X, He L (2009) Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 24:1651–1661. doi:10.1359/jbmr.090411

    Article  CAS  PubMed  Google Scholar 

  • Lv S, Li J, Feng W, Liu H, Du J, Sun J, Cui J, Sun B, Han X, Oda K, Amizuka N, Xu X, Li M (2015) Expression of HMGB1 in the periodontal tissue subjected to orthodontic force application by Waldo’s method in mice. J Mol Histol 46:107–114. doi:10.1007/s10735-014-9606-z

    Article  CAS  PubMed  Google Scholar 

  • Mai QG, Zhang ZM, Xu S, Lu M, Zhou RP, Zhao L, Jia CH, Wen ZH, Jin DD, Bai XC (2011) Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem 112:2902–2909. doi:10.1002/jcb.23206

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Iimura T, Ogura K, Moriyama K, Yamaguchi A (2013) The role of osteocytes in bone resorption during orthodontic tooth movement. J Dent Res 92:340–345. doi:10.1177/0022034513476037

    Article  CAS  PubMed  Google Scholar 

  • Mishima N, Sahara N, Shirakawa M, Ozawa H (2002) Effect of streptozotocin-induced diabetes mellitus on alveolar bone deposition in the rat. Arch Oral Biol 47:843–849

    Article  CAS  PubMed  Google Scholar 

  • Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234. doi:10.1038/nm.2452

    Article  CAS  PubMed  Google Scholar 

  • Oda K, Amaya Y, Fukushi-Irie M, Kinameri Y, Ohsuye K, Kubota I, Fujimura S, Kobayashi J (1999) A general method for rapid purification of soluble versions of glycosylphosphatidylinositol-anchored proteins expressed in insect cells: an application for human tissue-nonspecific alkaline phosphatase. J Biochem 126:694–699

    Article  CAS  PubMed  Google Scholar 

  • Peer A, Khamaisi M (2015) Diabetes as a risk factor for medication-related osteonecrosis of the jaw. J Dent Res 94:252–260. doi:10.1177/0022034514560768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakel A, Sheehy O, Rahme E, LeLorier J (2008) Osteoporosis among patients with type 1 and type 2 diabetes. Diabetes Metab 34:193–205. doi:10.1016/j.diabet.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  • Rendenbach C, Yorgan TA, Heckt T, Otto B, Baldauf C, Jeschke A, Streichert T, David JP, Amling M, Schinke T (2014) Effects of extracellular phosphate on gene expression in murine osteoblasts. Calcif Tissue Int 94:474–483. doi:10.1007/s00223-013-9831-6

    Article  CAS  PubMed  Google Scholar 

  • Shah M, Kola B, Bataveljic A, Arnett TR, Viollet B, Saxon L, Korbonits M, Chenu C (2010) AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass. Bone 47:309–319. doi:10.1016/j.bone.2010.04.596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52:313–320. doi:10.1016/j.phrs.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  • Tolosa MJ, Chuguransky SR, Sedlinsky C, Schurman L, McCarthy AD, Molinuevo MS, Cortizo AM (2013) Insulin-deficient diabetes-induced bone microarchitecture alterations are associated with a decrease in the osteogenic potential of bone marrow progenitor cells: preventive effects of metformin. Diabetes Res Clin Pract 101:177–186. doi:10.1016/j.diabres.2013.05.016

    Article  CAS  PubMed  Google Scholar 

  • van Lierop AH, Hamdy NA, van der Meer RW, Jonker JT, Lamb HJ, Rijzewijk LJ, Diamant M, Romijn JA, Smit JW, Papapoulos SE (2012) Distinct effects of pioglitazone and metformin on circulating sclerostin and biochemical markers of bone turnover in men with type 2 diabetes mellitus. Eur J Endocrinol/Eur Fed Endocr Soci 166:711–716. doi:10.1530/EJE-11-1061

    Article  Google Scholar 

  • Verna C, Dalstra M, Melsen B (2000) The rate and the type of orthodontic tooth movement is influenced by bone turnover in a rat model. Eur J Orthod 22:343–352

    Article  CAS  PubMed  Google Scholar 

  • Vestergaard P, Rejnmark L, Mosekilde L (2005) Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48:1292–1299. doi:10.1007/s00125-005-1786-3

    Article  CAS  PubMed  Google Scholar 

  • Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ (2011) Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One 6:e25900. doi:10.1371/journal.pone.0025900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise GE, King GJ (2008) Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res 87:414–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17:1235–1241. doi:10.1038/nm.2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Lu Y, Kalajzic I, Guo D, Harris MA, Gluhak-Heinrich J, Kotha S, Bonewald LF, Feng JQ, Rowe DW, Turner CH, Robling AG, Harris SE (2005) Dentin matrix protein 1 gene cis-regulation: use in osteocytes to characterize local responses to mechanical loading in vitro and in vivo. J Biol Chem 280:20680–20690. doi:10.1074/jbc.M500104200

    Article  CAS  PubMed  Google Scholar 

  • Yee CS, Xie L, Hatsell S, Hum N, Murugesh D, Economides AN, Loots GG, Collette NM (2016) Sclerostin antibody treatment improves fracture outcomes in a Type I diabetic mouse model. Bone 82:122–134. doi:10.1016/j.bone.2015.04.048

    Article  CAS  PubMed  Google Scholar 

  • You L, Temiyasathit S, Lee P, Kim CH, Tummala P, Yao W, Kingery W, Malone AM, Kwon RY, Jacobs CR (2008) Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone 42:172–179. doi:10.1016/j.bone.2007.09.047

    Article  CAS  PubMed  Google Scholar 

  • Zagrodna A, Jozkow P, Medras M, Majda M, Slowinska-Lisowska M. (2016) Sclerostin as a novel marker of bone turnover in athletes. Biol Sport 33:83–87. doi:10.5604/20831862.1194125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinman B, Haffner SM, Herman WH, Holman RR, Lachin JM, Kravitz BG, Paul G, Jones NP, Aftring RP, Viberti G, Kahn SE (2010) Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab 95:134–142. doi:10.1210/jc.2009-0572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the National Nature Science Foundation of China (Nos. 81271965; 81470719; 8151101150) to Li M. The Shandong Province Science and Technique Foundation, China (No. 2014GSF118093) to Guo J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minqi Li.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Du, J., Feng, W. et al. Histological evidence that metformin reverses the adverse effects of diabetes on orthodontic tooth movement in rats. J Mol Hist 48, 73–81 (2017). https://doi.org/10.1007/s10735-016-9707-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-016-9707-y

Keywords

Navigation