Skip to main content

Advertisement

Log in

Simulation-optimization model for production planning in the blood supply chain

  • Published:
Health Care Management Science Aims and scope Submit manuscript

Abstract

Production planning in the blood supply chain is a challenging task. Many complex factors such as uncertain supply and demand, blood group proportions, shelf life constraints and different collection and production methods have to be taken into account, and thus advanced methodologies are required for decision making. This paper presents an integrated simulation-optimization model to support both strategic and operational decisions in production planning. Discrete-event simulation is used to represent the flows through the supply chain, incorporating collection, production, storing and distribution. On the other hand, an integer linear optimization model running over a rolling planning horizon is used to support daily decisions, such as the required number of donors, collection methods and production planning. This approach is evaluated using real data from a blood center in Colombia. The results show that, using the proposed model, key indicators such as shortages, outdated units, donors required and cost are improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO (2014) Blood safety and availability. World Health Organization. http://www.who.int/mediacentre/factsheets/fs279/en/. Accessed 1 April 2014

  2. Osorio AF, Brailsford SC, Smith HK (2015) A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making. Int J Prod Res. doi:10.1080/00207543.2015.1005766, 1–22

    Google Scholar 

  3. Pratt ML, Grindon AJ (1982) Computer simulation analysis of blood donor queueing problems. Transfusion 22(3):234–237. doi:10.1046/j.1537-2995.1982.22382224948.x

    Article  Google Scholar 

  4. Brennan JE, Golden BL, Rappoport HK (1992) Go with the flow - improving Red Cross bloodmobiles using simulation analysis. Interfaces 22(5):1–13. doi:10.1287/inte.22.5.1

    Article  Google Scholar 

  5. Michaels JD, Brennan JE, Golden BL, Fu MC (1993) A simulation study of donor scheduling systems for the American Red Cross. Comput Oper Res 20(2):199–213. doi:10.1016/0305-0548(93)90075-T

    Article  Google Scholar 

  6. Lowalekar H, Ravichandran N (2010) Model for blood collections management. Transfusion 50(12 pt 2):2778–2784

    Article  Google Scholar 

  7. Alfonso E, Xie XL, Augusto V, Garraud O (2013) Modelling and simulation of blood collection systems: improvement of human resources allocation for better cost-effectiveness and reduction of candidate donor abandonment. Vox Sang 104(3):225–233. doi:10.1111/vox.12001

    Article  Google Scholar 

  8. Alfonso E, Xie XL, Augusto V, Garraud O (2012) Modeling and simulation of blood collection systems. Health Care Manag Sci 15(1):63–78. doi:10.1007/s10729-011-9181-8

    Article  Google Scholar 

  9. Alfonso VA, Xie X (2013) Tactical planning of bloodmobile collection systems. In: 2013 I.E. International Conference on Automation Science and Engineering (CASE), Madison, WI, 17–20 August 2013. pp 26–31

  10. Alfonso E, Augusto V, Xie X (2014) Mathematical programming models for annual and weekly bloodmobile collection planning. IEEE Trans Autom Sci Eng 99:1–10. doi:10.1109/TASE.2014.2329571

    Google Scholar 

  11. Madden E, Murphy L, Custer B (2007) Modeling red cell procurement with both double-red-cell and whole-blood collection and the impact of European travel deferral on units available for transfusion. Transfusion 47(11):2025–2037

    Article  Google Scholar 

  12. Ghandforoush P, Sen TK (2010) A DSS to manage platelet production supply chain for regional blood centers. Decis Support Syst 50(1):32–42. doi:10.1016/j.dss.2010.06.005

    Article  Google Scholar 

  13. Gunpinar S (2013) Supply chain optimization of blood products. PhD dissertation, University of South Florida, Tampa, FL

  14. Glynn SA, Busch MP, Schreiber GB, Murphy EL, Wright DJ, Tu Y, Kleinman SH (2003) Effect of a national disaster on blood supply and safety: the September 11 experience. JAMA 289(17):2246–2253. doi:10.1001/jama.289.17.2246

    Article  Google Scholar 

  15. Sonmezoglu M, Kocak N, Oncul O, Ozbayburtlu S, Hepgul Z, Kosan E, Aksu Y, Bayik M (2005) Effects of a major earthquake on blood donor types and infectious diseases marker rates. Transfus Med 15(2):93–97. doi:10.1111/j.0958-7578.2005.00557.x

    Article  Google Scholar 

  16. Boppana RV, Chalasani S (2007) Analytical models to determine desirable blood acquisition rates. Paper presented at the 2007 I.E. International Conference on System of Systems Engineering, San Antonio, TX, 16–18 April 2007

  17. Jabbarzadeh A, Fahimnia B, Seuring S (2014) Dynamic supply chain network design for the supply of blood in disasters: a robust model with real world application. Transp Res E Logist Transp Rev 70(0):225–244. doi:10.1016/j.tre.2014.06.003

    Article  Google Scholar 

  18. Deuermeyer B, Pierskalla WP (1978) A by-product production system with an alternative. Manag Sci 24(13):1373–1383

    Article  Google Scholar 

  19. Deuermeyer B (1979) A multi-type production system for perishable inventories. Oper Res 27(5):935–943

    Article  Google Scholar 

  20. Sirelson V, Brodheim E (1991) A computer planning model for blood platelet production and distribution. Comput Methods Prog Biomed 35(4):279–291. doi:10.1016/0169-2607(91)90006-F

    Article  Google Scholar 

  21. Katz AJ, Carter CW, Saxton P, Blutt J, Kakaiya RM (1983) Simulation analysis of platelet production and inventory management. Vox Sang 44(1):31–36

    Article  Google Scholar 

  22. Ledman RE, Groh N (1984) Platelet production planning to ensure availability while minimizing outdating. Transfusion 24(6):532–533. doi:10.1046/j.1537-2995.1984.24685066819.x

    Article  Google Scholar 

  23. Haijema R, van der Wal J, van Dijk NM (2007) Blood platelet production: optimization by dynamic programming and simulation. Comput Oper Res 34(3):760–779

    Article  Google Scholar 

  24. Haijema R, van Dijk N, van der Wal J, Smit Sibinga C (2009) Blood platelet production with breaks: optimization by SDP and simulation. Int J Prod Econ 121(2):464–473. doi:10.1016/j.ijpe.2006.11.026

    Article  Google Scholar 

  25. van Dijk N, Haijema R, van der Wal J, Sibinga CS (2009) Blood platelet production: a novel approach for practical optimization. Transfusion 49(3):411–420. doi:10.1111/j.1537-2995.2008.01996.x

    Article  Google Scholar 

  26. Baesler F, Martinez C, Yaksic E, Herrera C (2011) Logistic and production process in a regional blood center: modeling and analysis. Rev Med Chile 139(9):1150–1156

    Article  Google Scholar 

  27. Page B (1980) Alternative inventory and distribution policies for a regional blood banking system. Methods Inf Med 19(2):83–87

    Google Scholar 

  28. Rytilä JS, Spens KM (2006) Using simulation to increase efficiency in blood supply chains. Manag Res News 29(12):801–819

    Article  Google Scholar 

  29. Katsaliaki K, Brailsford SC (2007) Using simulation to improve the blood supply chain. J Oper Res Soc 58(2):219–227

    Article  Google Scholar 

  30. Yegül M (2007) Simulation analysis of the blood supply chain and a case study. Master’s thesis, Middle East Technical University, Ankara

  31. Baesler F, Nemeth M, Martínez C, Bastías A (2013) Analysis of inventory strategies for blood components in a regional blood center using process simulation. Transfusion. doi:10.1111/trf.12287

    Google Scholar 

  32. Lowalekar H, Ravichandran N (2011) A model for blood components processing. Transfusion 51(7 pt 2):1624–1634

    Article  Google Scholar 

  33. Simonetti A, Forshee R, Anderson S, Walderhaug M (2013) A stock-and-flow simulation model of the US blood supply. Transfusion. doi:10.1111/trf.12392

    Google Scholar 

  34. Nagurney A, Masoumi A, Yu M (2012) Supply chain network operations management of a blood banking system with cost and risk minimization. Comput Manag Sci 9(2):205–231. doi:10.1007/s10287-011-0133-z

    Article  Google Scholar 

  35. Nagurney A, Masoumi A (2012) Supply chain network design of a sustainable blood banking system. In: Boone T, Jayaraman V, Ganeshan R (eds) Sustainable supply chains, vol 174, International series in operations research & management science. Springer, New York, pp 49–72. doi:10.1007/978-1-4419-6105-1_5

    Chapter  Google Scholar 

  36. Abdulwahab U, Wahab MIM (2014) Approximate dynamic programming modeling for a typical blood platelet bank. Comput Ind Eng 78:259–270. doi:10.1016/j.cie.2014.07.017

    Article  Google Scholar 

  37. Lang JC (2010) Blood bank inventory control with transshipments and substitutions. In: Günter F, Walter T (eds) Production and inventory management with substitutions, vol 636, Lecture notes in economics and mathematical systems. Springer, Berlin, Heidelberg, pp 205–226

    Chapter  Google Scholar 

  38. Nikolopoulou A, Ierapetritou MG (2012) Hybrid simulation based optimization approach for supply chain management. Comput Chem Eng 47:183–193

    Article  Google Scholar 

  39. Santoso T, Ahmed S, Goetschalckx M, Shapiro A (2005) A stochastic programming approach for supply chain network design under uncertainty. Eur J Oper Res 167(1):96–115

    Article  Google Scholar 

  40. Almeder C, Preusser M, Hartl R (2009) Simulation and optimization of supply chains: alternative or complementary approaches? OR Spectr 31(1):95–119. doi:10.1007/s00291-007-0118-z

    Article  Google Scholar 

  41. Figueira G, Almada-Lobo B (2014) Hybrid simulation-optimization methods: a taxonomy and discussion. Simul Model Pract Theory 46:118–134. doi:10.1016/j.simpat.2014.03.007

    Article  Google Scholar 

  42. INS (2013) Informe Nacional de Indicadores 2013 (national report of indicators). Gestión y Supervisión Red bancos de sangre. Instituto Nacional de Salud, Bogotá

    Google Scholar 

  43. Woodget M (2014) Annual functional report – estates & facilities. NHS Blood and Transplant. http://www.nhsbt.nhs.uk/download/board_papers/jan14/annual_functional_report_estates_and_facilities.pdf. Accessed 28 Sept 2015

Download references

Acknowledgments

We are very grateful to the staff of the Hemocentro Distrital for their support with this project and for providing data. We are also grateful for the comments of the editor and anonymous reviewers, which have greatly improved the quality of this paper. The first author’s research is funded by a PhD scholarship from the Departamento Administrativo de Ciencia y Tecnologia, Colciencias, Bogota, Colombia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres F. Osorio.

Appendices

Appendix A

Table 8

Table 8 Probability distributions used

Appendix B

Table 9

Table 9 Values of set elements used in the example model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osorio, A.F., Brailsford, S.C., Smith, H.K. et al. Simulation-optimization model for production planning in the blood supply chain. Health Care Manag Sci 20, 548–564 (2017). https://doi.org/10.1007/s10729-016-9370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10729-016-9370-6

Keywords

Navigation