Skip to main content
Log in

N-terminal HrpE from Xanthomonas oryzae pv. oryzae mediates the regulation of growth and photosynthesis in rice

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Harpin proteins, produced by gram-negative bacteria, can enhance the plant growth. The growth enhancing potential of the harpins are beneficial and may be associated with the functional regions of the proteins. Harpins are also known to stimulate the hypersensitive cell death (HCD) but identification of functional terminal of the proteins may be beneficial to use the deleterious regions of these proteins without any negative effects like HCD. Here, we report the identification and testing of the derivate fragments of HrpE protein from Xanthomonas oryzae pv. oryzae, the pathogen that causes the bacterial blight disease in rice. Two fragments of the HrpE protein i.e. C-HrpE and N-HrpE generated by truncation mutation were evaluated for their response on the seed vigor index and vegetative growth of the rice plants. Rice seedlings and plants evaluated for their root and shoot morphology showed that N-HrpE protein is essential for plant growth enhancement and increased photosynthetic efficiency. Rice plants grown under the influence of HrpE and its derivate fragments were evaluated for the transcriptional profiling of the genes related to the plant growth and quantification of the growth regulatory hormones by UPLC provides the necessary avenues to prove that HrpE requires N terminus to enhance the vegetative growth in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not Applicable.

References

  • Aswathi KPR, Kalaji HM, Puthur JT (2021) Seed priming of plants aiding in drought stress tolerance and faster recovery: a review. Plant Growth Regul

  • Benschop JJ, Millenaar FF, Smeets ME, Van Zanten M, Voesenek LACJ, Peeters AJM (2007) Abscisic acid antagonizes ethylene-induced hyponastic growth in Arabidopsis. Plant Physiol 143:1013–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiol 133:1677–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Büssis D, Von Groll U, Fisahn J, Altmann T (2006) Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions. Funct Plant Biol 33:1037–1043

    Article  PubMed  Google Scholar 

  • Chen L, Qian J, Qu S, Long J, Yin Q, Zhang C et al (2008) Identification of specific fragments of HpaG Xooc, a harpin from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in plants. Phytopathology 98:781–791

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhang SJ, Zhang SS, Qu S, Ren X, Long J et al (2008) A fragment of the Xanthomonas oryzae pv. oryzicola harpin HpaG Xooc reduces disease and increases yield of rice in extensive grower plantings. Phytopathology 98:792–802

    Article  PubMed  Google Scholar 

  • Choi MS, Kim W, Lee C, Oh CS (2013) Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria. Mol Plant-Microbe Interact 26:1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science (80-) 273:1239–1241

    Article  CAS  Google Scholar 

  • Van Dijk K, Fouts DE, Rehm AH, Hill AR, Collmer A, Alfano JR (1999) The Avr (effector) proteins HrmA (HopPsyA) and AvrPto are secreted in culture from Pseudomonas syringae pathovars via the Hrp (type III) protein secretion system in a temperature- and pH-sensitive manner. J Bacteriol 181:4790–4797

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodd AN, Parkinson K, Webb AAR (2004) Independent circadian regulation of assimilation and stomatal conductance in the ztl-1 mutant of Arabidopsis. New Phytol 162:63–70

    Article  Google Scholar 

  • Dong H, Beer SV (2000) Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90:801–811

    Article  CAS  PubMed  Google Scholar 

  • Dong HP, Peng J, Bao Z, Meng X, Bonasera JM, Chen G et al (2004) Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol 136:3628–3638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong HP, Yu H, Bao Z, Guo X, Peng J, Yao Z et al (2005) The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221:313–327

    Article  CAS  PubMed  Google Scholar 

  • Dong X (1998) SA, JA, ethylene, and disease resistance in plants.Curr Opin Plant Biol316–323

  • Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A et al (2012) Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis. Plant Sci 193–194:70–84

    Article  PubMed  Google Scholar 

  • Flexas J, Ortuño MF, Ribas-Carbo M, Diaz-Espejo A, Flórez-Sarasa ID, Medrano H (2007) Mesophyll conductance to CO2 in Arabidopsis thaliana. New Phytol 175:501–511

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743

    Article  CAS  PubMed  Google Scholar 

  • Gottig N, Vranych CV, Sgro GG, Piazza A, Ottado J (2018) HrpE, the major component of the Xanthomonas type three protein secretion pilus, elicits plant immunity responses. Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  • Gupta R, Chakrabarty SK (2013) Gibberellic acid in plant. Plant Signal Behav 8:e25504

    Article  PubMed  PubMed Central  Google Scholar 

  • Guzman P, Ecker JR (1990) Exploiting the triple response of arabídopsís to identify ethylene-related mutants. Plant Cell 2:513–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haider MS, Jogaiah S, Pervaiz T, Yanxue Z, Khan N, Fang J (2019) Physiological and transcriptional variations inducing complex adaptive mechanisms in grapevine by salt stress. Environ Exp Bot 162:455–467

    Article  CAS  Google Scholar 

  • Hanif A, Zhang F, Li P, Li C, Xu Y, Zubair M et al (2019) Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis. Toxins (Basel) 11:1–11

    Article  Google Scholar 

  • Hansen H, Grossmann K (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol 124:1437–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He SY (1998) Type III protein secretion systems in plant and animal pathogenic bacteria. Annu Rev Phytopathol 36:363–392

    Article  CAS  PubMed  Google Scholar 

  • Hienonen E, Roine E, Taira S (2002) mRNA stability and the secretion signal of HrpA, a pilin secreted by the type III system in Pseudomonas syringae. Mol Genet genomics 266:973–978

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann-Benning S, Kende H (1992) On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol 99:1156–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang YS, Sohn SI, Wang MH (2006) The hrpN gene of Erwinia amylovora stimulates tobacco growth and enhances resistance to Botrytis cinerea. Planta 223:449–456

    Article  CAS  PubMed  Google Scholar 

  • Karadeniz A, Topcuoǧlu ŞF, Inan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22:1061–1064

    Article  CAS  Google Scholar 

  • Katsumi M, Phinney BO, Purves WK (1965) The roles of gibberellin and auxin in cucumber hypocotyl growth. Physiol Plant 18:462–473

    Article  CAS  Google Scholar 

  • Khedr AHA, Abbas MA, Abdel Wahid AA, Quick WP, Abogadallah GM (2003) Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54:2553–2562

    Article  CAS  PubMed  Google Scholar 

  • Kvitko BH, Ramos AR, Morello JE, Oh HS, Collmer A (2007) Identification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors. J Bacteriol 189:8059–8072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Che Y, Zou H, Cui Y, Guo W, Zou L et al (2011) Hpa2 Required by HrpF to translocate Xanthomonas oryzae transcriptional activator-like effectors into rice for pathogenicity. Appl Environ Microbiol 77:3809–3818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Han L, Zhao Y, You Z, Dong H, Zhang C (2014) Hpa1 harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis. J Biosci 39:127–137

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang H, Gago J, Cui H, Qian Z, Kodama N et al (2015) Harpin Hpa1 interacts with aquaporin PIP1;4 to promote the substrate transport and photosynthesis in Arabidopsis. Sci Rep 5:1–17

    Google Scholar 

  • Li D, Xu G, Ren G, Sun Y, Huang Y, Liu C (2017) The application of ultra-high-performance liquid chromatography coupled with a LTQ-Orbitrap mass technique to reveal the dynamic accumulation of secondary metabolites in licorice under ABA stress. Molecules 22:1–12

    Article  Google Scholar 

  • Li P, Zhang L, Mo X, Ji H, Bian H, Hu Y et al (2019) Aquaporin PIP1;3 of rice and harpin Hpa1 of bacterial blight pathogen cooperate in a type III effector translocation. J Exp Botony 70:3057–3073

    Article  CAS  Google Scholar 

  • Liu H, Wang Y, Zhou X, Wang, Cui W, Chao, Fu J, Wei T (2016) Overexpression of a harpin-encoding gene popW from Ralstonia solanacearum primed antioxidant defenses with enhanced drought tolerance in tobacco plants. Plant Cell Rep 35:1333-1344

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401

    Article  CAS  PubMed  Google Scholar 

  • Makino S, Sugio A, White F, Bogdanove AJ (2007) Inhibition of resistance gene-mediated defense in rice by Xanthomonas oryzae pv. oryzicola. Mol Plant-Microbe Interact 19:240–249

  • Matayoshi CL, Pena LB, Arbona V, Gómez A, Susana C (2021) Biochemical and hormonal changes associated with root growth restriction under cadmium stress during maize (Zea mays L.) pre – emergence. Plant Growth Regul

  • Maurel C (2007) Plant aquaporins: Novel functions and regulation properties. FEBS Lett 581:2227–2236

    Article  CAS  PubMed  Google Scholar 

  • Miao W, Wang X, Li M, Song C, Wang Y, Hu D, Wang J (2010) Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against different pathogens through a priming mechanism.BMC Plant Biol10

  • Moritz T, Peeters AJM, Voesenek LACJ, Cox MCH, Benschop JJ, Vreeburg RAM, Wagemaker CAM (2004) The roles of ethylene, auxin, abscisic acid, and gibberellin in the hyponastic growth of submerged Rumex palustris petioles’. Plant Physiol 136:2948–2960

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh J, Kim JG, Jeon E, Yoo CH, Jae SM, Rhee S, Hwang I (2007) Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria. J Biol Chem 282:13601–13609

    Article  CAS  PubMed  Google Scholar 

  • Pavlović I, Petřík I, Tarkowská D, Lepeduš H, Vujčić Bok V, Radić Brkanac S et al (2018) Correlations between phytohormones and drought tolerance in selected Brassica crops: Chinese cabbage, white cabbage and kale. Int J Mol Sci 19:1–23

    Article  Google Scholar 

  • Peng JL, Bao ZL, Ren HY, Wang JS, Dong HS (2004) Expression of harpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology 94:1048–1055

    Article  CAS  PubMed  Google Scholar 

  • Poulson ME, Edwards GE, Browse J (2002) Photosynthesis is limited at high leaf to air vapor pressure deficit in a mutant of Arabidopsis thaliana that lacks trienoic fatty acids. Photosynth Res 72:55–63

    Article  CAS  PubMed  Google Scholar 

  • Preston A, Mandrell RE, Gibson BW, Apicella MA (1996) The lipooligosaccharides of pathogenic gram-negative bacteria. Crit Rev Microbiol 22:139–180

    Article  CAS  PubMed  Google Scholar 

  • Price J, Li TC, Kang SG, Na JK, Jang JC (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol 132:1424–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Cruz C, Delgado L, López-Iglesias C, Mercade E (2015) Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria. PLoS One 10

  • Ren H, Gu G, Long J, Yin Q, Wu T, Song T et al (2006) Combinative effects of a bacterial type-III effector and a biocontrol bacterium on rice growth and disease resistance. J Biosci 31:617–627

    Article  CAS  PubMed  Google Scholar 

  • Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: Five novel mutant loci integrated into a stress response pathway. Genetics 139:1393–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sang S, Li X, Gao R, You Z, Lü B, Liu P et al (2012) Apoplastic and cytoplasmic location of harpin protein Hpa1 Xoo plays different roles in H2O2 generation and pathogen resistance in Arabidopsis. Plant Mol Biol 79:375–391

    Article  CAS  PubMed  Google Scholar 

  • Sarah M, Assmann (2003) Open stomata opens the door to ABA signaling in Arabidopsis guard cells. Trends Plant Sci 8:149–151

    Google Scholar 

  • Schroeder JI, Kwak JM, Allen GJ (2001) Engineering drought hardiness in plants. Nature 410:327–330

    Article  CAS  PubMed  Google Scholar 

  • Sheikh TMM, Zhang L, Zubair M, Hanif A, Li P, Farzand A et al (2019) The type III accessory protein HrpE of Xanthomonas oryzae pv. oryzae surpasses the secretion role, and enhances plant resistance and photosynthesis. Microorganisms 7:572

    Article  CAS  PubMed Central  Google Scholar 

  • Staskawicz BJ, Mudgett MB, Dangl JL, Galan JE (2001) Common and contrasting themes of plant and animal diseases. Science 292:2285–2289

    Article  CAS  PubMed  Google Scholar 

  • Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehlein N, Sperling H, Heckwolf M, Kaldenhoff R (2012) The Arabidopsis aquaporin PIP1;2 rules cellular CO2 uptake. Plant, Cell Environ 35:1077–1083

    Article  CAS  Google Scholar 

  • Wang KLC, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:131–152

    Article  Google Scholar 

  • Wang X, Zhang L, Ji H, Mo X, Li P, Wang J, Dong H (2018) Hpa1 is a type III translocator in Xanthomonas oryzae pv. oryzae. BMC Microbiol 18:1–11

    Article  Google Scholar 

  • Wang T, Liu Q, Wang N, Dai J, Lu Q, Jia X, Zuo Y (2021) Foliar arginine application improves tomato plant growth, yield, and fruit quality via nitrogen accumulation. Plant Growth Regul 95(3):421–428

    Article  CAS  Google Scholar 

  • Wei Z, Laby RJ, Zumoff CH, Bauer DW, He SY, Colimer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 80–:85–88

    Article  Google Scholar 

  • Wu X, Wu T, Long J, Yin Q, Zhang Y, Chen L et al (2007) Productivity and biochemical properties of green tea in response to full-length and functional fragments of HpaGXooc, a harpin protein from the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola. J Biosci 32:1119–1131

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhao J, Morgan RL, Ma W, Jiang T (2010) Computational prediction of type III secreted proteins from gram-negative bacteria.BMC Bioinformaticsdoi: 10.1186/1471-2105-11-S1-S47

  • Zhang C, Qian J, Bao Z, Hong X, Dong H (2007) The induction of abscisic-acid-mediated drought tolerance is independent of ethylene signaling in Arabidopsis plants responding to a harpin protein. Plant Mol Biol Report 25:98–114

    Article  Google Scholar 

  • Zhang L, Xiao S, Li W, Feng W, Li J, Wu Z et al (2011) Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance. J Exp Bot 62:4229–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zubair H, Farzand, Sheikh, Khan S et al (2019) Genetic screening and expression analysis of psychrophilic Bacillus spp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat. Microorganisms 7:337

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

We gratefully acknowledge financial support granted by China National Key Research and Development Plan (Grant no. 2017YFD0200901), The Natural Science Foundation of China (31772247,31672008), Talent Recruitment Funding of Shandong Agricultural University (0171226), the Open Project Program (CSBAA2020008) of State Key Laboratory of Crop Stress Biology for Arid Areas (NWAFU), and the College Students’ innovation and entrepreneurship training program (S20190007).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, T.M.M.S., M.Z.; Methodology, T.M.M.S., M. Zu., A.H.; Software, A.R.K., A.F., M.S.H., H.A.; Validation, H.D., M.Z.; Formal analysis, M. Zu., M.S.H., P.L., L.T.; Data curation, X.O., P.L., L.T., H.A.; Writing-original draft preparation, T.M.M.S.; Writing-review and editing, T.M.M.S., M.Z., A.H., X.O.; Visualization, T.M.M.S., A.F., L.T., A.R.K.; Supervision, H.D., M.Z.; Project administration, M.Z.; Funding acquisition, H.D., M.Z.

Corresponding authors

Correspondence to Hansong Dong or Meixiang Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Editorial Responsibility: Xiue Wang.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, T.M.M., Haider, M.S., Hanif, A. et al. N-terminal HrpE from Xanthomonas oryzae pv. oryzae mediates the regulation of growth and photosynthesis in rice. Plant Growth Regul 96, 383–396 (2022). https://doi.org/10.1007/s10725-021-00790-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-021-00790-w

Keywords

Navigation