Skip to main content
Log in

Isolation of high purity guard cell protoplasts of Arabidopsis thaliana for omics research

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Stomata are unique plant structures responsible for photosynthesis, transpiration and innate immunity to pathogens, and guard cells are one of the most studied cell types with respect to plant cell functioning, signalling, and stress responses. The ability to easily purify large quantities of high purity guard cell protoplasts (GCPs) would facilitate further studies, as current methods for GCP isolation are barely sufficient for omics research. Here, we report a new procedure for isolating high purity GCPs. For the isolation of GCPs, detached epidermal peels were used to extract GCPs instead of whole leaves. GCPs and mesophyll cell protoplasts (MCPs) were found to have diameters of 2.5–9.1 µm and 6.5–43.5 µm, respectively. The overlap in sizes of GCPs and MCPs suggests that blending and filtering of whole leaves used in previous methods may not necessarily avoid contamination with MCPs during GCP extraction. There were, on average, 8.4 ± 0.18 chloroplasts in GCPs and 34.6 ± 1.5 in MCPs. For MCPs and GCPs with similar sizes, there were fourfold more chloroplasts in MCPs, which made MCPs readily distinguishable from GCPs by microscopic inspection. The protocol enabled the isolation of over 1.44 × 106 GCPs from about 150 cm2Arabidopsis abaxial epidermis with over 97% purity. These protocols provide an advance in isolating sufficient, high purity, and viable protoplasts for RNA extraction and transcriptomic analysis. The application of this protocol to other plant species may accelerate the research and development of plant cell-type specific omics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen GJ, Sanders D (1994) Two voltage-gated, calcium release channels coreside in the vacuolar membrane of broad bean guard cells. Plant Cell 6:685–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen GJ, Kuchitsu K, Chu SP, Murata Y, Schroeder JI (1999) Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell 11:1785–1798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aubry S, Aresheva O, Reyna-Llorens I, Smith-Unna R, Hibberd JM, Genty B (2016) A specific transcriptome signature for guard cells from the C4 plant Gynandropsis gynandra. Plant Physiol 170:1345–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonales-Alatorre E, Shabala S, Chen Z-H, Pottosin I (2013) Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa. Plant Physiol 162:940–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennecke P et al (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 10:1093–1095

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Papanatsiou M, Blatt MR, Chen ZH (2017) Speedy grass stomata: emerging molecular and evolutionary features. Mol Plant 10:912–914

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Hills A, Lim CK, Blatt MR (2010) Dynamic regulation of guard cell anion channels by cytosolic free Ca2+ concentration and protein phosphorylation. Plant J 61:816–825

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Eisenach C, Xu XQ, Hills A, Blatt MR (2012) Protocol: optimised electrophyiological analysis of intact guard cells from Arabidopsis. Plant Methods 8:1–15

    Article  CAS  Google Scholar 

  • Chen ZH et al (2016) Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis. New Phytol 209:1456–1469

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH et al (2017) Molecular evolution of grass stomata. Trends Plant Sci 22:124–139

    Article  CAS  PubMed  Google Scholar 

  • Chen G et al (2019) Leaf epidermis transcriptome reveals drought-Induced hormonal signaling for stomatal regulation in wild barley. Plant Growth Regul 87:39–54

    Article  CAS  Google Scholar 

  • Chung HS, Koo AJ, Gao X, Jayanty S, Thines B, Jones AD, Howe GA (2008) Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol 146:952–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deal RB, Henikoff S (2011) The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 6:56–68

    Article  CAS  PubMed  Google Scholar 

  • Fairley-Grenot K, Assmann S (1992) Whole-cell K+ current across the plasma membrane of guard cells from a grass: Zea mays. Planta 186:282–293

    Article  CAS  PubMed  Google Scholar 

  • Fitzsimons PJ, Weyers JD (1983) Separation and purification of protoplast types from Commelina communis L. leaf epidermis. J Exp Bot 34:55–66

    Article  CAS  Google Scholar 

  • Franks PJ, Doheny-Adams TW, Britton-Harper ZJ, Gray JE (2015) Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytol 207:188–195

    Article  CAS  PubMed  Google Scholar 

  • Gudesblat GE, Torres PS, Vojno AA (2009) Stomata and pathogens: warfare at the gates. Plant Signal Behav 4:1114–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo FQ (2002) The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought Susceptibility in Arabidopsis. Plant Cell 15:107–117

    Article  CAS  Google Scholar 

  • Hall RD et al (1996) A high efficiency technique for the generation of transgenic sugar beets from stomatal guard cells. Nat Biotechnol 14:1133

    Article  CAS  PubMed  Google Scholar 

  • Hara K, Yagi M, Koizumi N, Kusano T, Sano H (2000) Screening of wound-responsive genes identifies an immediate-early expressed gene encoding a highly charged protein in mechanically wounded tobacco plants. Plant Cell Physiol 41:684–691

    Article  CAS  PubMed  Google Scholar 

  • He X, Zeng J, Cao F, Ahmed IM, Zhang G, Vincze E, Wu F (2015) HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. J Exp Bot 66:7405–7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedrich R, Shabala S (2018) Stomata in a saline world. Curr Opin Plant Biol 46:87–95

    Article  CAS  PubMed  Google Scholar 

  • Hedrich R, Busch H, Raschke K (1990) Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J 9:3889–3892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriksen GH, Assmann SM (1997) Laser-assisted patch clamping: a methodology. Pflügers Arch 433:832–841

    Article  CAS  PubMed  Google Scholar 

  • Hetzel J, Duttke SH, Benner C, Chory J (2016) Nascent RNA sequencing reveals distinct features in plant transcription. Proc Natl Acad Sci USA 113:12316–12321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular California Agricultural Experiment Station, Berkeley, p C347

    Google Scholar 

  • Hughes J et al (2017) Reducing stomatal density in barley improves drought tolerance without impacting on yield. Plant Physiol 174:776–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jezek M, Blatt MR (2017) The membrane transport system of the guard cell and its integration for stomatal dynamics. Plant Physiol 174:487–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin X, Wang RS, Zhu M, Jeon BW, Albert R, Chen S, Assmann SM (2013) Abscisic acid-responsive guard cell metabolomes of Arabidopsis wild-type and gpa1 G-protein mutants. Plant Cell 25:4789–4811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruse T, Tallman G, Zeiger E (1989) Isolation of guard cell protoplasts from mechanically prepared epidermis of Vicia faba leaves. Plant Physiol 90:1382–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahav M, Abu-Abied M, Belausov E, Schwartz A, Sadot E (2004) Microtubules of guard cells are light sensitive. Plant Cell Physiol 45:573–582

    Article  CAS  PubMed  Google Scholar 

  • Lake JA, Wade RN (2009) Plant-pathogen interactions and elevated CO2: morphological changes in favour of pathogens. J Exp Bot 60:3123–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson T (2009) Guard cell photosynthesis and stomatal function. New Phytol 181:13–34

    Article  CAS  PubMed  Google Scholar 

  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libault M et al (2010) Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection. Plant Physiol 152:541–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libault M, Pingault L, Zogli P, Schiefelbein J (2017) Plant systems biology at the single-cell level. Trends Plant Sci 22:949–960

    Article  CAS  PubMed  Google Scholar 

  • Lind C et al (2015) Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure. Curr Biol 25:928–935

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2013) Functional conservation of MIKC*-type MADS box genes in Arabidopsis and rice pollen maturation. Plant Cell 25:1288–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mäser P, Leonhardt N, Schroeder JI (2003) The clickable guard cell: electronically linked model of guard cell signal transduction pathways. The Arabidopsis Book, New York

    Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  CAS  PubMed  Google Scholar 

  • Meyer S et al (2010) AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J 63:1054–1062

    Article  CAS  PubMed  Google Scholar 

  • Misra BB, Acharya BR, Granot D, Assmann SM, Chen S (2015) The guard cell metabolome: functions in stomatal movement and global food security. Front Plant Sci 6:334

    Article  PubMed  PubMed Central  Google Scholar 

  • Obulareddy N, Panchal S, Melotto M (2013) Guard cell purification and RNA isolation suitable for high-throughput transcriptional analysis of cell-type responses to biotic stresses. Mol Plant Microbe Interact 26:844–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palevitz B (1981) The structure and development of stomatal cells. Stomatal Physiol 8:1–23

    Google Scholar 

  • Pandey S, Wang XQ, Coursol SA, Assmann SM (2002) Preparation and applications of Arabidopsis thaliana guard cell protoplasts. New Phytol 153:517–526

    Article  CAS  PubMed  Google Scholar 

  • Petropoulos S et al (2016) Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165:1012–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raissig MT, Matos JL, Gil MX, Kornfeld A, Bettadapur A, Abrash E, Allison HR, Badgley G, Vogel JP, Berry JA, Bergmann DC (2017) Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. Science 355:1215–1218

    Article  CAS  PubMed  Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robaina-Estévez S, Daloso DM, Zhang Y, Fernie AR, Nikoloski Z (2017) Resolving the central metabolism of Arabidopsis guard cells. Sci Rep 7:8307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnabl H, Bornman CH, Ziegler H (1978) Studies on isolated starch-containing (Vicia faba) and starch-deficient (Allium cepa) guard cell protoplasts. Planta 143:33–39

    Article  CAS  PubMed  Google Scholar 

  • Vahisalu T et al (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Blatt MR (2011) Anion channel sensitivity to cytosolic organic acids implicates a central role for oxaloacetate in integrating ion flux with metabolism in stomatal guard cells. Biochem J 439:161–170

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Papanatsiou M, Eisenach C, Karnik R, Williams M, Hills A, Lew VL, Blatt MR (2012) Systems dynamic modeling of a guard cell Cl channel mutant uncovers an emergent homeostatic network regulating stomatal transpiration. Plant Physiol 160:1956–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Chen ZH, Zhang B, Hills A, Blatt MR (2013) PYR/PYL/RCAR abscisic acid receptors regulate K+ and Cl channels through reactive oxygen species-mediated activation of Ca2+ channels at the plasma membrane of intact Arabidopsis guard cells. Plant Physiol 163:566–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Lan P, Shen RF (2016) Integration of transcriptomic and proteomic analysis towards understanding the systems biology of root hairs. Proteomics 16:877–893

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen ZH, Yang C, Zhang X, Jin G, Chen G, Wang Y, Holford P, Nevo E, Zhang G, Dai F (2018) Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the Tabigha Evolution Slope. PNAS 115(20):5223–5228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward JM, Schroeder JI (1994) Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 6:669–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham H, Chang W (2008) ggplot2: AN implementation of the Grammar of Graphics R package version 07. https://cran.r-project.org/web/packages/ggplot2/index.html

  • Wu AR et al (2013) Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods 11:41–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Costa A, Leonhardt N, Siegel RS, Schroeder JI (2008) Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods 4:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang DL et al (2017) Calcium pumps and interacting BON1 protein modulate calcium signature, stomatal closure, and plant immunity. Plant Physiol 175:424–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Zhao W, Yang R, Wang J, Zhao F, Wang S (2018) Preparation and applications of guard cell protoplasts from the leaf epidermis of Solanum lycopersicum. Plant Methods 14:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeiger E (1981) Novel approaches to the biology of stomatal guard cells: protoplast and fluorescence studies. Stomatal Physiol SEB Semin Ser 8:103–117

    Google Scholar 

  • Zeiger E, Hepler PK (1976) Production of guard cell protoplasts from onion and tobacco. Plant Physiol 58:492–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng W, Melotto M, He SY (2010) Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr Opin Biotechnol 21:599–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Sack FD (1999) Ultrastructure of stomatal development in Arabidopsis (Brassicaceae) leaves. Am J Bot 86:929–939

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Haigh AM, Holford P, Chen ZH (2018) Roles of chloroplast retrograde signals and ion transport in plant drought tolerance. Int J Mol Sci 19:963

    Article  CAS  PubMed Central  Google Scholar 

  • Zhao C, Wang Y, Chan KX et al (2019) Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land. PNAS 116:5015–5020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signalling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Australian Research Council (ARC) (Grant No. DE1401011143) and Horticulture Innovation Australia (HIA) projects (LP18000, VG16070, VG17003) to Z.H.C. We thank Ms Linda Westmoreland, Dr Sumedha Dharmaratne and Ms. Sharleen Hamersma for their technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

ZHC conceived and directed the study; CZ and DR conducted the experiments; CZ, ZHC, AMH, and PH wrote the manuscript; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhong-Hua Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Randall, D., Holford, P. et al. Isolation of high purity guard cell protoplasts of Arabidopsis thaliana for omics research. Plant Growth Regul 89, 37–47 (2019). https://doi.org/10.1007/s10725-019-00520-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-019-00520-3

Keywords

Navigation