Skip to main content
Log in

Transcriptome sequencing reveals role of light in promoting anthocyanin accumulation of strawberry fruit

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The woodland strawberry, Fragaria vesca, is a model plant for the diverse Rosaceae family, which contains many valuable fruit and ornamental crops. Light is an important external environment factor which influences all aspects of plant growth and development, including fruit ripening. Transcription regulation of light will provide insights into effect of light for fruit ripening. We treat strawberry fruit with dark or light, and by the RNA-Seq method, compare transcriptional level between dark-treated and light-treated strawberry fruits. Additionally, we detect anthocyanin and sugar accumulation in two-treated conditions of fruits. Moreover, we detect the protein change of FvMYB10, a key regulator of anthocyanin biosynthesis, under dark and light. Light can promote anthocyanin and soluble sugar accumulation in mature fruit, and also increases the expression of aroma-related genes and stabilizes FvMYB10 protein. Our findings reveal that light is essential for anthocyanin and sugar accumulation and regulates FvMYB10 at transcriptional level and post-translation level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aharoni A et al (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28:319–332

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A et al (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16:3110–3131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13:99–102

    Article  PubMed  CAS  Google Scholar 

  • Andrews S (2014) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 15 June 2018

  • Azuma A, Yakushiji H, Koshita Y, Kobayashi S (2012) Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236:1067–1080

    Article  PubMed  CAS  Google Scholar 

  • Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958–970

    Article  PubMed  CAS  Google Scholar 

  • Banaś AK, Aggarwal C, Łabuz J, Sztatelman O, Gabryś H (2012) Blue light signalling in chloroplast movements. J Exp Bot 63:1559–1574

    Article  PubMed  CAS  Google Scholar 

  • Baudry A, Caboche M, Lepiniec L (2006) TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. Plant J 46:768–779

    Article  PubMed  CAS  Google Scholar 

  • Bhatia S, Singh R (2002) Phytohormone-mediated transformation of sugars to starch in relation to the activities of amylases, sucrose-metabolising enzymes in sorghum grain. Plant Growth Regul 36:97–104

    Article  CAS  Google Scholar 

  • Borevitz JO, Xia YJ, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7:204–210

    Article  PubMed  CAS  Google Scholar 

  • Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–339

    Article  PubMed  CAS  Google Scholar 

  • Butelli E et al (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  PubMed  CAS  Google Scholar 

  • Butelli E et al (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:1242–1255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castillejo C, de la Fuente JI, Iannetta P, Botella M, Valpuesta V (2004) Pectin esterase gene family in strawberry fruit: study of FaPE1, a ripening-specific isoform. J Exp Bot 55:909–918

    Article  PubMed  CAS  Google Scholar 

  • Chaves I et al (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335–364

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Chory J (2011) Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 21:664–671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen JW, Zhang SL, Zhang LC, Xu CJ, Chen KS (2001) Effects of shading on the distribution of photosynthate, metabolism and accumulation of sugar in developing citrus fruits. Acta Phytophysiol Sin 27:499–504

    CAS  Google Scholar 

  • Chory J (1992) A genetic model for light-regulated seedling development in Arabidopsis. Development 115:337–354

    CAS  Google Scholar 

  • Christie JM et al (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492–1496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cominelli E, Gusmaroli G, Allegra D, Galbiati M, Wade HK, Jenkins GI, Tonelli C (2008) Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. J Plant Physiol 165:886–894

    Article  PubMed  CAS  Google Scholar 

  • Cumplido-Laso G et al (2012) The fruit ripening-related gene FaAAT2 encodes an acyl transferase involved in strawberry aroma biogenesis. J Exp Bot 63:4275–4290

    Article  PubMed  CAS  Google Scholar 

  • Demarsy E, Fankhauser C (2009) Higher plants use LOV to perceive blue light. Curr Opin Plant Biol 12:69–74

    Article  PubMed  CAS  Google Scholar 

  • Dubos C et al (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55:940–953

    Article  PubMed  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng F, Li M, Ma F, Cheng L (2013) Phenylpropanoid metabolites and expression of key genes involved in anthocyanin biosynthesis in the shaded peel of apple fruit in response to sun exposure. Plant Physiol Biochem 69:54–61

    Article  PubMed  CAS  Google Scholar 

  • Figueroa CR, Pimentel P, Gaete-Eastman C, Moya M, Herrera R, Caligari PDS, Moya-León MA (2008) Softening rate of the Chilean strawberry (Fragaria chiloensis) fruit reflects the expression of polygalacturonase and pectate lyase genes. Postharvest Biol Technol 49:210–220

    Article  CAS  Google Scholar 

  • Gesell A, Yoshida K, Tran LT, Constabel CP (2014) Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134. Planta 240:497–511

    Article  PubMed  CAS  Google Scholar 

  • Giliberto L et al (2005) Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol 137:199–208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    Article  PubMed  CAS  Google Scholar 

  • Guan HP, Janes HW (1991) Light regulation of sink metabolism in tomato fruit: I. Growth and sugar accumulation. Plant Physiol 96:916–921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hannum SM (2004) Potential impact of strawberries on human health: a review of the science. Crit Rev Food Sci Nutr 44:1–17

    Article  PubMed  CAS  Google Scholar 

  • Hawkins C, Caruana J, Schiksnis E, Liu Z (2016) Genome-scale DNA variant analysis and functional validation of a SNP underlying yellow fruit color in wild strawberry. Sci Rep 6:29017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hawkins C, Caruana J, Li J, Zawora C, Darwish O, Wu J, Alkharouf N, Liu Z (2017) An eFP browser for visualizing strawberry fruit and flower transcriptomes. Hortic Res 4:17029. https://doi.org/10.1038/hortres.2017.29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He JA, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci T 1:163–187

    Article  CAS  Google Scholar 

  • He S-B, Wang W-X, Zhang J-Y, Xu F, Lian H-L, Li L, Yang H-Q (2015) The CNT1 domain of Arabidopsis CRY1 alone is sufficient to mediate blue light inhibition of hypocotyl elongation. Mol Plant 8:822–825

    Article  PubMed  CAS  Google Scholar 

  • Heijde M, Ulm R (2012) UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17:230–237

    Article  PubMed  CAS  Google Scholar 

  • Hong SH et al (2008) CRY1 inhibits COP1-mediated degradation of BIT1, a MYB transcription factor, to activate blue light-dependent gene expression in Arabidopsis. Plant J 55:361–371

    Article  PubMed  CAS  Google Scholar 

  • Jaakola L (2013) New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci 18:477–483

    Article  PubMed  CAS  Google Scholar 

  • Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M (2004) Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant sci 167:247–252

    Article  CAS  Google Scholar 

  • Jin H et al (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19:6150–6161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kadomura-Ishikawa Y, Miyawaki K, Noji S, Takahashi A (2013) Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa fruits. J Plant Res 126:847–857

    Article  PubMed  CAS  Google Scholar 

  • Kadomura-Ishikawa Y, Miyawaki K, Takahashi A, Masuda T, Noji S (2015) Light and abscisic acid independently regulated FaMYB10 in Fragaria x ananassa fruit. Planta 241:953–965

    Article  PubMed  CAS  Google Scholar 

  • Kang CY, Lian HL, Wang FF, Huang JR, Yang HQ (2009) Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell 21:2624–2641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kikuchi T, Arakawa O, Norton RN (1997) Improving skin color of ‘Fuji’ apple in Japan. Fruit Var J 51:71–75

    Google Scholar 

  • Kondo S et al (2014) Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night. J Plant Physiol 171:823–829

    Article  PubMed  CAS  Google Scholar 

  • Koyama K, Ikeda H, Poudel PR, Goto-Yamamoto N (2012) Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry 78:54–64

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Khurana A, Sharma AK (2014) Role of plant hormones and their interplay in development and ripening of fleshy fruits. J Exp Bot 65:4561–4575

    Article  PubMed  CAS  Google Scholar 

  • Li S (2014) Transcriptional control of flavonoid biosynthesis. Plant Signal Behav 9:e27522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y-Y, Mao K, Zhao C, Zhao X-Y, Zhang H-L, Shu H-R, Hao Y-J (2012) MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-Induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiol 160:1011–1022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li T, Jia K-P, Lian H-L, Yang X, Li L, Yang H-Q (2014) Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochem Biophys Res Commun 454:78–83

    Article  PubMed  CAS  Google Scholar 

  • Li D, Li L, Luo Z, Mou W, Mao L, Ying T (2015) Comparative transcriptome analysis reveals the influence of abscisic acid on the metabolism of pigments, ascorbic acid and folic acid during strawberry fruit ripening. PLoS ONE 10:e0130037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lian H-L et al (2011) Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism. Gene Dev 25:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Lin-Wang K et al (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in rosaceae. BMC Plant Biol 10:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin-Wang KUI et al (2011) High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ 34:1176–1190

    Article  PubMed  CAS  Google Scholar 

  • Lin-Wang K et al. (2014) Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Front Plant Sci. https://doi.org/10.3389/fpls.2014.00651

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L-J et al (2008) COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20:292–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu B, Zuo Z, Liu H, Liu X, Lin C (2011) Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Gene Dev 25:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Lu X-D, Zhou C-M, Xu P-B, Luo Q, Lian H-L, Yang H-Q (2015) Red-light-dependent interaction of phyB with SPA1 promotes COP1–SPA1 dissociation and photomorphogenic development in Arabidopsis. Mol Plant 8:467–478

    Article  PubMed  CAS  Google Scholar 

  • Maier A et al (2013) Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. Plant J 74:638–651

    Article  PubMed  CAS  Google Scholar 

  • Matus JT, Loyola R, Vega A, Peña-Neira A, Bordeu E, Arce-Johnson P, Alcalde JA (2009) Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J Exp Bot 60:853–867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matus JT, Poupin MJ, Cañón P, Bordeu E, Alcalde JA, Arce-Johnson P (2010) Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.). Plant Mol Biol 72:607–620

    Article  PubMed  CAS  Google Scholar 

  • Miao L et al (2016) Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria × ananassa) fruit. Food Chem 207:93–100

    Article  PubMed  CAS  Google Scholar 

  • Nagatani A (2010) Phytochrome: structural basis for its functions. Curr Opin Plant Biol 13:565–570

    Article  PubMed  CAS  Google Scholar 

  • Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466

    Article  PubMed  CAS  Google Scholar 

  • Raab T, López-Ráez JA, Klein D, Caballero JL, Moyano E, Schwab W, Muñoz-Blanco J (2006) FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase. Plant Cell 18:1023–1037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salvatierra A, Pimentel P, Moya-León MA, Herrera R (2013) Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene. Phytochemistry 90:25–36

    Article  PubMed  CAS  Google Scholar 

  • Schaart JG et al (2013) Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits. New Phytol 197:454–467

    Article  PubMed  CAS  Google Scholar 

  • Seo HS, Yang JY, Ishikawa M, Bolle C, Ballesteros ML, Chua NH (2003) LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423:995–999

    Article  PubMed  CAS  Google Scholar 

  • Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Cao S, Shi L, Chen W, Su X, Yang Z (2014) Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit. J Agric Food Chem 62:4778–4783

    Article  PubMed  CAS  Google Scholar 

  • Xu F et al (2017) Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit auxin signaling in Arabidopsis. Mol Plant. https://doi.org/10.1016/j.molp.2017.12.003

    Article  PubMed  Google Scholar 

  • Yang J et al (2005) Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17:804–821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang C, Xie F, Jiang Y, Li Z, Huang X, Li L (2018) Phytochrome A negatively regulates the shade avoidance response by increasing auxin/indole acidic acid protein stability. Dev Cell 1:29–41

    Article  CAS  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. https://doi.org/10.1186/gb-2010-11-2-r14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Gonzalez A, Zhao MZ, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859–4869

    Article  PubMed  CAS  Google Scholar 

  • Zheng X et al (2013) Arabidopsis Phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under far-red light. Plant Cell 25:115–133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zifkin M et al (2012) Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiol 158:200–224

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40:22–34

    Article  PubMed  CAS  Google Scholar 

  • Zoratti L, Karppinen K, Luengo Escobar A, Häggman H, Jaakola L (2014) Light-controlled flavonoid biosynthesis in fruits. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00534

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China grants to H.-L.L (31570282 and 31170266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongli Lian.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Zawora, C., Li, Y. et al. Transcriptome sequencing reveals role of light in promoting anthocyanin accumulation of strawberry fruit. Plant Growth Regul 86, 121–132 (2018). https://doi.org/10.1007/s10725-018-0415-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-018-0415-3

Keywords

Navigation