Skip to main content
Log in

Morpho-anatomical and physiological responses to waterlogging stress in different barley (Hordeum vulgare L.) genotypes

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Waterlogging is one of the major stresses limiting crop production worldwide. The understanding of the mechanisms of plant adaptations to waterlogging stress helps improve plant tolerance to stress. In this study, physiological responses and morpho-anatomical adaptations of seven different barley genotypes were investigated under waterlogging stress. The results showed that the waterlogging-tolerant varieties (TX9425, Yerong, TF58) showed less reduction in plant height, SPAD (soil–plant analyses development analyses) value, tillers, shoot and root biomasses than did the waterlogging-sensitive varieties (Franklin, Naso Nijo, TF57). Under waterlogging stress condition, the tolerant genotypes also showed a much larger number of adventitious roots than did the sensitive genotypes. More intercellular spaces and better integrated chloroplast membrane structures were observed in the leaves of the waterlogging-tolerant cultivars, which is likely due to increased ethylene content, decreased ABA content and less accumulation of O2.−. The ability to form new adventitious roots and intercellular spaces in shoots can also be used as selection criteria in breeding barley for waterlogging tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Argus RE, Colmer TD, Grierson PF (2015) Early physiological flood tolerance is followed by slow post-flooding root recovery in the dryland riparian tree Eucalyptus camaldulensis subsp. refulgens. Plant Cell Environ 38:1189–1199

    Article  PubMed  CAS  Google Scholar 

  • Arias-Moreno DM, Jiménez-Bremont JF, Maruri-López I, Delgado-Sánchez P (2017) Effects of catalase on chloroplast arrangement in Opuntia streptacantha chlorenchyma cells under salt stress. Sci Rep 7:8656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benschop JJ, Jackson MB, Gühl K, Vreeburg RA, Croker SJ, Peeters AJ, Voesenek LA (2005) Contrasting interactions between ethylene and abscisic acid in Rumex species differing in submergence tolerance. Plant J 44:756–768

    Article  PubMed  CAS  Google Scholar 

  • Broughton S, Zhou GF, Teakle NL, Matsuda R, Zhou MX, O’Leary RA, Colmer T, Li CD (2015) Waterlogging tolerance is associated with root porosity in barley. Mol Breeding 35:27

    Article  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  PubMed  CAS  Google Scholar 

  • Chen XM, Qiu LL, Guo HP, Wang Y, Yuan HW, Yan DL, Zheng BS (2017) Spermidine induces physiological and biochemical changes in southern highbush blueberry under drought stress. Braz J Bot 40:841–851

    Article  Google Scholar 

  • Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36

    Article  CAS  Google Scholar 

  • Colmer TD, Pedersen O (2008) Oxygen dynamics in submerged rice (Oryza sativa). New Phytol 178:326–334

    Article  PubMed  CAS  Google Scholar 

  • Colmer TD, Voesenek LACJ. (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36:665–681

    Article  Google Scholar 

  • Crozier A, Sandberg G, Monteiro AM, Sundberg B (1986) The use of immunological techniques in plant hormone analysis. In: Bopp M (ed) Plant growth substances 1985. Springer, Berlin, pp 13–21

    Chapter  Google Scholar 

  • Dawood T, Rieu I, Wolters-Arts M, Derksen EB, Mariani C, Visser EJ (2014) Rapid flooding-induced adventitious root development from preformed primordia in Solanum dulcamara. AoB Plants 6:490–552

    Article  CAS  Google Scholar 

  • Jackson MB, Colmer TD (2005) Response and adaptation by plants to flooding stress. Ann Bot 96:501–505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    Article  PubMed  CAS  Google Scholar 

  • Jung J, Lee SC, Choi HK (2008) Anatomical patterns of aerenchyma in aquatic and wetland plants. J Plant Biol 51:428–439

    Article  Google Scholar 

  • Kim YH, Hwang SJ, Waqas M, Khan AL, Lee JH, Lee JD, Nguyen T, Lee H IJ (2015) Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance. Front Plant Sci 6:714

    PubMed  PubMed Central  Google Scholar 

  • Malik AI, Colmer TD, Lambers H, Schortemeyer M (2003) Aerenchyma formation and radial O2 loss along adventitious roots of wheat with only the apical root portion exposed to O2 deficiency. Plant Cell Environ 26:1713–1722

    Article  Google Scholar 

  • Mano Y, Omori F (2008) Verification of QTL controlling root aerenchyma formation in a maize × teosinte “Zea nicaraguensis” advanced backcross population. Breed Sci 58:217–223

    Article  Google Scholar 

  • Mano Y, Omori F (2013) Relationship between constitutive root aerenchyma formation and flooding tolerance in Zea nicaraguensis. Plant Soil 370:447–460

    Article  CAS  Google Scholar 

  • Mano Y, Omori F, Loaisiga CH, Bird RMK (2009) QTL mapping of above-ground adventitious roots during flooding in maize × teosinte “Zea nicaraguensis” backcross population. Plant Root 3:3–9

    Article  CAS  Google Scholar 

  • Matsukura C, Kawai M, Toyofuku K, Barrero RA, Uchimiya H, Yamaguchi J (2000) Transverse vein differentiation associated with gas space formation-fate of the middle cell layer in leaf sheath development of rice. Ann Bot 85:19–27

    Article  Google Scholar 

  • Parlanti S, Kudahettige NP, Lombardi L, Mensuali-Sodi A, Alpi A, Perata P, Pucciariello C (2011) Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance. Ann Bot 107:1335–1343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol 190:351–368

    Article  PubMed  CAS  Google Scholar 

  • Ren BZ, Zhang JW, Dong ST, Liu P, Zhao B (2016) Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PLoS ONE 11:e0161424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romina P, Abeledo LG, Miralles DJ (2014) Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant Soil 378:265–277

    Article  CAS  Google Scholar 

  • Sauter M (2013) Root responses to flooding. Curr Opin Plant Biol 16:282–286

    Article  PubMed  Google Scholar 

  • Setter TL, Waters I (2003) Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 253:1–34

    Article  CAS  Google Scholar 

  • Shao QS, Wang HZ, Gou HP, Zhou AC, Huang YQ, Sun YL, Li MY (2014) Effects of shade treatment on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii. PLoS ONE 9:1–10

    Google Scholar 

  • Shimamura S, Yoshioka T, Yamamoto R, Hiraga S, Nakamura T, Shimada S, Komatsu S (2014) Role of abscisic acid in flood-induced secondary aerenchyma formation in soybean (Glycine max) hypocotyls. Plant Prod Sci 17:131–137

    Article  CAS  Google Scholar 

  • Steffens B (2014) The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Front Plant Sci 5:685

    Article  PubMed  PubMed Central  Google Scholar 

  • Steffens B, Rasmussen A (2016) The physiology of adventitious roots. Plant Physiol 170:603–617

    Article  PubMed  CAS  Google Scholar 

  • Steffens B, Geske T, Sauter M (2011) Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytol 190:369–378

    Article  PubMed  CAS  Google Scholar 

  • Vidoz ML, Loreti E, Mensuali A, Alpi A, Perata P (2010) Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J 63:551–562

    Article  PubMed  CAS  Google Scholar 

  • Visser EJW, Voesenek LACJ (2004) Acclimation to soil flooding-sensing and signal-transduction. Plant Soil 254:197–214

    Google Scholar 

  • Wang LH, Li DH, Zhang YX, Yuan G, Yu JY, Sauter X, Zhang XR (2016) Tolerant and susceptible sesame genotypes reveal waterlogging stress response patterns. PLoS ONE 11:e0149912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang RF, Dai HX, Shi M, Ahmed IM, Liu WX, Chen ZH, Zhang GP, Wu FB (2017) Genotype-dependent effects of phosphorus supply on physiological and biochemical responses to Al-stress in cultivated and Tibetan wild barley. Plant Growth Regul 82:259–270

    Article  CAS  Google Scholar 

  • Wei WL, Li DH, Wang LH, Wang LH, Ding X, Zhang YX, Gao Y, Zhang XR (2013) Morpho-anatomical and physiological responses to waterlogging of sesame (Sesamum indicum L.). Plant Sci 208:102–111

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Li JL, Zhang XQ, Wei H, Cui LJ (2006) Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285

    Article  CAS  Google Scholar 

  • Xu XW, Ji J, Xu Q, Q XH, Chen XH (2017) Inheritance and quantitative trail loci mapping of adventitious root numbers in cucumber seedlings under waterlogging conditions. Mol Genet Genomics 292:353

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi T, Watanabe K, Fukazawa A, Mori H, Kawaquchi K, Oyanagi A, Nakazono M (2014) Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions. J Exp Bot 65:261–273

    Article  PubMed  CAS  Google Scholar 

  • Yordanova RY, Christov KN, Popova LP (2004) Antioxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot 51:93–101

    Article  CAS  Google Scholar 

  • Zhang H, Xue YG, Wang ZQ, Yang JC, Zhang JH (2009) Morphological and physiological traits of roots and their relationships with shoot growth in “super’’ rice. Field Crop Res 113:31–40

    Article  CAS  Google Scholar 

  • Zhang XC, Shabala S, Koutoulis A, Shabala L, Johnson P, Hayes D, Nichols DS, Zhou MX (2015a) Waterlogging tolerance in barley is associated with faster aerenchyma formation in adventitious roots. Plant Soil 394:355–372

    Article  CAS  Google Scholar 

  • Zhang YJ, Song XZ, Yang GZ, Li ZH, Lu HQ, Kong XQ, Eneji AE, Dong HZ (2015b) Physiological and molecular adjustment of cotton to waterlogging at peak-flowering in relation to growth and yield. Field Crop Res 179:164–172

    Article  Google Scholar 

  • Zhang M, Jin ZQ, Zhao J, Zhang GP, Wu FB (2015c) Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley. Plant Growth Regul 75:567–574

    Article  CAS  Google Scholar 

  • Zhang XC, Zhou GF, Shabala S, Koutoulis A, Shabala L, Johnson P, Li CD, Zhou MX (2016) Identification of aerenchyma formation related QTL in barley that can be effective in breeding for waterlogging tolerance. Theor Appl Genet 129:1167–1177

    Article  PubMed  CAS  Google Scholar 

  • Zheng YK, Wang Z (2011) Contrast observation and investigation of wheat endosperm transfer cells and nucellar projection transfer cells. Plant Cell Rep 30:1281–1288

    Article  PubMed  CAS  Google Scholar 

  • Zheng CF, Jiang D, Liu FL, Dai TB, Jing Q, Cao WX (2009) Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci 176:575–582

    Article  PubMed  CAS  Google Scholar 

  • Zhou MX (2012) Accurate phenotyping reveals better QTL for waterlogging tolerance in barley. Plant Breed 130:203–208

    Article  CAS  Google Scholar 

  • Zhou MX, Li HB, Mendham NJ (2007) Combining ability of waterlogging tolerance in barley. Crop Sci 47:278–284

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (31571648), the National Barley and Highland Barley Industrial Technology Specially Constructive Foundation of China (CARS-05), the opening project of Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland (K2016-03), the funds institute of Agricultural Science in Jiangsu Coastal Areas (YHS201605), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rugen Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7507 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, H., Guo, B., Pan, Y. et al. Morpho-anatomical and physiological responses to waterlogging stress in different barley (Hordeum vulgare L.) genotypes. Plant Growth Regul 85, 399–409 (2018). https://doi.org/10.1007/s10725-018-0401-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-018-0401-9

Keywords

Navigation