Skip to main content
Log in

Hydrogen sulfide enhances poplar tolerance to high-temperature stress by increasing S-nitrosoglutathione reductase (GSNOR) activity and reducing reactive oxygen/nitrogen damage

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Poplar (Populus trichocarpa) is an important woody tree for landscape and agricultural use worldwide. Nitric oxide (NO) and hydrogen sulfide (H2S) are essential messengers that enhance tolerance to environmental stress in herbaceous plants; however, the role of these messengers in modifying environmental stress in woody plants is poorly understood. Here we found that high temperature (HT) rapidly induced the generation of H2S, accompanied by increased activity of enzymes involved in H2S biosynthesis. HT also induced the accumulation of reactive nitrogen species (RNS) and reactive oxygen species (ROS), including S-nitrosothiols, H2O2, and O2 , which damage the leaves. S-nitrosoglutathione reductase (GSNOR) has a critical role in preventing RNS and ROS damage in plants. We found that HT gradually increased the transcriptional level and the activity of GSNOR, resulting in increased scavenging of the over-accumulated ROS and RNS and, ultimately, increased adaptation to HT stress. Pharmacological experiments showed that suppressing H2S biosynthesis reduced GSNOR activity, thereby increasing RNS- and ROS-mediated damage to the leaves. Based on these data, we propose that H2S influences the response of woody plants to HT by modulating the NO signal and GSNOR activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antunes SC, Freitas R, Figueira E, Goncalves F, Nunes B (2013) Biochemical effects of acetaminophen in aquatic species: edible clams Venerupis decussata and Venerupis philippinarum. Environ Sci Pollut Res Int 20(9):6658–6666. doi:10.1007/s11356-013-1784-9

    Article  CAS  PubMed  Google Scholar 

  • Astier J, Rasul S, Koen E, Manzoor H, Besson-Bard A, Lamotte O, Jeandroz S, Durner J, Lindermayr C, Wendehenne D (2011) S-nitrosylation: an emerging post-translational protein modification in plants. Plant Sci 181(5):527–533. doi:10.1016/j.plantsci.2011.02.011

    Article  CAS  PubMed  Google Scholar 

  • Bai XG, Chen JH, Kong XX, Todd CD, Yang YP, Hu XY, Li DZ (2012) Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. Free Radic Biol Med 53(4):710–720. doi:10.1016/j.freeradbiomed.2012.05.042

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Long J, He X, Yan J, Chen X, Tan Y, Li K, Chen L, Xu H (2016) Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance. Sci Rep 6:26400. doi:10.1038/srep26400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beligni MV, Lamattina L (2002) Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species. Plant Cell Environ 25(6):737–748. doi:10.1046/j.1365-3040.2002.00857.x

    Article  CAS  Google Scholar 

  • Bir SC, Kolluru GK, McCarthy P, Shen X, Pardue S, Pattillo CB, Kevil CG (2012) Hydrogen sulfide stimulates ischemic vascular remodeling through nitric oxide synthase and nitrite reduction activity regulating hypoxia-inducible factor-1alpha and vascular endothelial growth factor-dependent angiogenesis. J Am Heart Assoc 1(5):e004093. doi:10.1161/JAHA.112.004093

    Article  PubMed  PubMed Central  Google Scholar 

  • Bokszczanin KL, Fragkostefanakis S, Solanaceae Pollen Thermotolerance Initial Training Network (SPOT-ITN) Consortium (2013) Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front Plant Sci 4:315. doi:10.3389/fpls.2013.00315

    Article  PubMed  PubMed Central  Google Scholar 

  • Burke JJ, Chen J (2015) Enhancement of reproductive heat tolerance in plants. PLoS ONE 10(4):e0122933. doi:10.1371/journal.pone.0122933

    Article  PubMed  PubMed Central  Google Scholar 

  • Calderwood A, Kopriva S (2014) Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. Nitric Oxide 41:72–78. doi:10.1016/j.niox.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  • Chaki M, Valderrama R, Fernandez-Ocana AM, Carreras A, Gomez-Rodriguez MV, Lopez-Jaramillo J, Begara-Morales JC, Sanchez-Calvo B, Luque F, Leterrier M, Corpas FJ, Barroso JB (2011) High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin-NADP reductase by tyrosine nitration. Plant Cell Environ 34(11):1803–1818. doi:10.1111/j.1365-3040.2011.02376.x

    Article  CAS  PubMed  Google Scholar 

  • Chang W, Liu X, Zhu J, Fan W, Zhang Z (2016) An aquaporin gene from halophyte Sesuvium portulacastrum, SpAQP1, increases salt tolerance in transgenic tobacco. Plant Cell Rep 35(2):385–395. doi:10.1007/s00299-015-1891-9

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wang WH, Wu FH, He EM, Liu X, Shangguan ZP, Zheng HL (2015) Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots. Sci Rep 5:12516. doi:10.1038/srep12516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng W, Zhang L, Jiao C, Su M, Yang T, Zhou L, Peng R, Wang R, Wang C (2013) Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum. Plant Physiol Biochem 70:278–286. doi:10.1016/j.plaphy.2013.05.042

    Article  CAS  PubMed  Google Scholar 

  • Cheng T, Chen J, Ef AA, Wang P, Wang G, Hu X, Shi J (2015) Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress. Planta 242(6):1361–1390. doi:10.1007/s00425-015-2374-5

    Article  CAS  PubMed  Google Scholar 

  • Christou A, Filippou P, Manganaris GA, Fotopoulos V (2014) Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol 14:42. doi:10.1186/1471-2229-14-42

    Article  PubMed  PubMed Central  Google Scholar 

  • Correa-Aragunde N, Foresi N, Lamattina L (2015) Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study. J Exp Bot 66(10):2913–2921. doi:10.1093/jxb/erv073

    Article  CAS  PubMed  Google Scholar 

  • Da Silva CJ, Fontes EPB, Modolo LV (2017) Salinity-induced accumulation of endogenous H2S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Havana Plant Science 256:148–159. doi:10.1016/j.plantsci.2016.12.011

    Article  PubMed  Google Scholar 

  • Driedonks N, Rieu I, Vriezen WH (2016) Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reprod 29(1–2):67–79. doi:10.1007/s00497-016-0275-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70(2):616–620

    Article  CAS  PubMed  Google Scholar 

  • Feller U (2016) Drought stress and carbon assimilation in a warming climate: reversible and irreversible impacts. J Plant Physiol. doi:10.1016/j.jplph.2016.04.002

    PubMed  Google Scholar 

  • Garcia-Mata C, Lamattina L (2010) Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol 188(4):977–984. doi:10.1111/j.1469-8137.2010.03465.x

    Article  CAS  PubMed  Google Scholar 

  • Gong B, Wen D, Wang X, Wei M, Yang F, Li Y, Shi Q (2015) S-nitrosoglutathione reductase-modulated redox signaling controls sodic alkaline stress responses in Solanum lycopersicum L. Plant Cell Physiol 56(4):790–802. doi:10.1093/pcp/pcv007

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684. doi:10.3390/ijms14059643

    Article  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Higashitani A (2013) High temperature injury and auxin biosynthesis in microsporogenesis. Front Plant Sci 4:47. doi:10.3389/fpls.2013.00047

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu XY, Neill SJ, Cai WM, Tang ZC (2004) Induction of defence gene expression by oligogalacturonic acid requires increases in both cytosolic calcium and hydrogen peroxide in Arabidopsis thaliana. Cell Res 14(3):234–240. doi:10.1038/sj.cr.7290224

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Kong X, Wang C, Ma L, Zhao J, Wei J, Zhang X, Loake GJ, Zhang T, Huang J, Yang Y (2014) Proteasome-mediated degradation of FRIGIDA modulates flowering time in Arabidopsis during vernalization. Plant Cell 26(12):4763–4781. doi:10.1105/tpc.114.132738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai D, Mao Y, Zhou H, Li F, Wu M, Zhang J, He Z, Cui W, Xie Y (2014) Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K(+) loss in seedlings of Medicago sativa. Plant Sci 225:117–129. doi:10.1016/j.plantsci.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  • Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 20(3):786–802. doi:10.1105/tpc.107.052647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leterrier M, Chaki M, Airaki M, Valderrama R, Palma JM, Barroso JB, Corpas FJ (2011) Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. Plant Signal Behav 6(6):789–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZG, Jin JZ (2016) Hydrogen sulfide partly mediates abscisic acid-induced heat tolerance in tobacco (Nicotiana tabacum L.) suspension cultured cells. Plant Cell Tiss Org 125(2):207–214. doi:10.1007/s11240-015-0939-4

    Article  CAS  Google Scholar 

  • Li ZG, Xie LR, Li XJ (2015) Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings. J Plant Physiol 177:121–127. doi:10.1016/j.jplph.2014.12.018

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Wang ZF, Zhao YN, Zhang XC, Zhang SJ, Bo LT, Wang Y, Ding YF, An LZ (2016a) Putrescine protects hulless barley from damage due to UV-B stress via H2S- and H2O2-mediated signaling pathways. Plant Cell Rep 35(5):1155–1168. doi:10.1007/s00299-016-1952-8

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Min X, Zhou ZH (2016b) Hydrogen sulfide: a signal molecule in plant cross-adaptation. Front Plant Sci 7:1621. doi:10.3389/fpls.2016.01621

    PubMed  PubMed Central  Google Scholar 

  • Lisjak M, Teklic T, Wilson ID, Whiteman M, Hancock JT (2013) Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ 36(9):1607–1616. doi:10.1111/pce.12073

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Yang Y, Hu X (2015) Roles of H2S in adaptation of alpine plants Lamiophlomis rotata to altitude gradients. Plant Signal Behav 10(12):e1055433. doi:10.1080/15592324.2015.1055433

    Article  PubMed  Google Scholar 

  • Malik SI, Hussain A, Yun BW, Spoel SH, Loake GJ (2011) GSNOR-mediated de-nitrosylation in the plant defence response. Plant Sci 181(5):540–544. doi:10.1016/j.plantsci.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  • Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J Photochem Photobiol B 137:116–126. doi:10.1016/j.jphotobiol.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  • Mesihovic A, Iannacone R, Firon N, Fragkostefanakis S (2016) Heat stress regimes for the investigation of pollen thermotolerance in crop plants. Plant Reprod 29(1–2):93–105. doi:10.1007/s00497-016-0281-y

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Rahman A, Ansary MM, Watanabe A, Fujita M, Tran LS (2015) Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Sci Rep 5:14078. doi:10.1038/srep14078

    Article  PubMed  PubMed Central  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59(2):165–176. doi:10.1093/jxb/erm293

    Article  CAS  PubMed  Google Scholar 

  • Peng R, Bian Z, Zhou L, Cheng W, Hai N, Yang C, Yang T, Wang X, Wang C (2016) Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.). Plant Cell Rep 35(11):2325–2340. doi:10.1007/s00299-016-2037-4

    Article  CAS  PubMed  Google Scholar 

  • Rieu I, Twell D, Firon N (2017) Pollen development at high temperature: from acclimation to collapse. Plant Physiol 173(4):1967–1976. doi:10.1104/pp.16.01644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahay S, Gupta M (2017) An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide 67:39–52. doi:10.1016/j.niox.2017.04.011

    Article  CAS  PubMed  Google Scholar 

  • Scuffi D, Alvarez C, Laspina N, Gotor C, Lamattina L, Garcia-Mata C (2014) Hydrogen sulfide generated by l-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. Plant Physiol 166(4):2065–2076. doi:10.1104/pp.114.245373

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen J, Xing T, Yuan H, Liu Z, Jin Z, Zhang L, Pei Y (2013) Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions. PLoS ONE 8(10):e77047. doi:10.1371/journal.pone.0077047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Ye T, Han N, Bian H, Liu X, Chan Z (2015) Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. J Integr Plant Biol 57(7):628–640. doi:10.1111/jipb.12302

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Grover A (2008) Genetic engineering for heat tolerance in plants. Physiol Mol Biol Plants 14(1–2):155–166. doi:10.1007/s12298-008-0014-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tossi V, Amenta M, Lamattina L, Cassia R (2011) Nitric oxide enhances plant ultraviolet-B protection up-regulating gene expression of the phenylpropanoid biosynthetic pathway. Plant Cell Environ 34(6):909–921. doi:10.1111/j.1365-3040.2011.02289.x

    Article  CAS  PubMed  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604. doi:10.1126/science.1128691

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Du Y, Hou YJ, Zhao Y, Hsu CC, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK (2015) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci USA 112(2):613–618. doi:10.1073/pnas.1423481112

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Mao Y, Zhang W, Lai D, Wang Q, Shen W (2014) Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis. Plant Physiol 165(2):759–773. doi:10.1104/pp.114.237925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Zhu JK (2001) Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiol Plant 112(2):152–166

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Cohen MF (2016) Biological consilience of hydrogen sulfide and nitric oxide in plants: gases of primordial earth linking plant, microbial and animal physiologies. Nitric Oxide 55–56:91–100. doi:10.1016/j.niox.2016.04.002

    Article  PubMed  Google Scholar 

  • Yang M, Qin BP, Ma XL, Wang P, Li ML, Chen LL, Chen LT, Sun AQ, Wang ZL, Yin YP (2016a) Foliar application of sodium hydrosulfide (NaHS), a hydrogen sulfide (H2S) donor, can protect seedlings against heat stress in wheat (Triticum aestivum L.). J Integr Agr 15(12):2745–2758. doi:10.1016/S2095-3119(16)61358-8

    Article  CAS  Google Scholar 

  • Yang L, Tian D, Todd CD, Luo Y, Hu X (2016b) Comparative proteome analyses reveal that nitric oxide is an important signal molecule in the response of rice to aluminum toxicity. J Proteome Res 12(3):1316–1330. doi: 10.1021/pr300971n

    Article  Google Scholar 

  • Yang L, Ji J, Harris-Shultz KR, Wang H, Wang H, Abd-Allah EF, Luo Y, Hu X (2016c) The dynamic changes of the plasma membrane proteins and the protective roles of nitric oxide in rice subjected to heavy metal cadmium stress. Front Plant Sci 7:190. doi: 10.3389/fpls.2016.00190

    PubMed  PubMed Central  Google Scholar 

  • Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M (2007) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175(1):36–50. doi:10.1111/j.1469-8137.2007.02071.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Luo Q, Wang RL, Xu J (2017) Hydrogen sulfide toxicity inhibits primary root growth through the ROS-NO pathway. Sci Rep. doi:10.1038/s41598-017-01046-2

    Google Scholar 

  • Ziogas V, Tanou G, Belghazi M, Filippou P, Fotopoulos V, Grigorios D, Molassiotis A (2015) Roles of sodium hydrosulfide and sodium nitroprusside as priming molecules during drought acclimation in citrus plants. Plant Mol Biol 89(4–5):433–450. doi:10.1007/s11103-015-0379-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (863 Program, No. 2013AA102705), National High-level Personnel of Special Support Program, the Qinglan Project of Jiangsu province, the Nature Science Foundation of Jiangsu Province (BK20151097), the Talent Project by the Ministry of Science and Technology, and Priority Academic Program Development of Jiangsu Higher Education Institutions. Funding was provided by National Key Basic Research Program of China (No. 2012B114500) and the National Science Foundation of China (No. 31170619).

Author information

Authors and Affiliations

Authors

Contributions

Tielong Cheng, Yan Ma, Ye Peng and Jinhui Chen performed most of the experiments; Jisen Shi Yini Dong and Jinhui Chen analyzed results; Xiangyang Hu and Jinhui Chen conceptualized the research program and revised the manuscript.

Corresponding author

Correspondence to Jinhui Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, T., Shi, J., Dong, Y. et al. Hydrogen sulfide enhances poplar tolerance to high-temperature stress by increasing S-nitrosoglutathione reductase (GSNOR) activity and reducing reactive oxygen/nitrogen damage. Plant Growth Regul 84, 11–23 (2018). https://doi.org/10.1007/s10725-017-0316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0316-x

Keywords

Navigation