Skip to main content
Log in

Brassica napus Cycling Dof Factor1 (BnCDF1) is involved in flowering time and freezing tolerance

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

DNA binding with One Finger (DOF) transcription factor plays important roles in many aspects of plant growth and development, but the molecular mechanisms behinds its actions in plant development and stress tolerance are little known. Here, we report on the Brassica napus DOF gene, which is homologous to Arabidopsis Cycling DOF Factor1 and functions as a transcriptional regulator with regard to flowering time and freezing tolerance. The BnCDF1 gene was ubiquitously expressed in plants, and its expression was induced in response to low temperatures. Arabidopsis plants overexpressing BnCDF1 showed increased freezing tolerance. In addition, the expression of stress-responsive genes was activated in transgenic lines. Furthermore, overexpression in Arabidopsis of BnCDF1 delays flowering time by modulating the expression patterns of CO and FT flowering time control genes. In conclusion, the results reported herein connect BnCDF1 to the functions of freezing tolerance and flowering time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chen W, Chao G, Singh KB (1996) The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites. Plant J 10(6):955–966

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Corrales AR, Nebauer SG, Carrillo L, Fernandez-Nohales P, Marques J, Renau-Morata B, Granell A, Pollmann S, Vicente-Carbajosa J, Molina RV et al (2014) Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. J Exp Bot 65(4):995–1012

    Article  CAS  PubMed  Google Scholar 

  • Diaz I, Vicente-Carbajosa J, Abraham Z, Martinez M, Isabel-La Moneda I, Carbonero P (2002) The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. Plant J 29(4):453–464

    Article  CAS  PubMed  Google Scholar 

  • Fornara F, Panigrahi KC, Gissot L, Sauerbrunn N, Ruhl M, Jarillo JA, Coupland G (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17(1):75–86

    Article  CAS  PubMed  Google Scholar 

  • Gardiner J, Sherr I, Scarpella E (2010) Expression of DOF genes identifies early stages of vascular development in Arabidopsis leaves. Int J Dev Biol 54(8–9):1389–1396

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124(4):1854–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Qin G, Gu H, Qu LJ (2009) Dof5.6/HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in Arabidopsis. Plant Cell 21(11):3518–3534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6(9):431–438

    Article  CAS  PubMed  Google Scholar 

  • Imin N, Kerim T, Rolfe BG, Weinman JJ (2004) Effect of early cold stress on the maturation of rice anthers. Proteomics 4(7):1873–1882

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Kim SJ, Abbasi N, Bressan RA, Yun DJ, Yoo SD, Kwon SY, Choi SB (2010) The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis. Plant J 64(3):524–535

    Article  CAS  PubMed  Google Scholar 

  • Kotake T, Takada S, Nakahigashi K, Ohto M, Goto K (2003) Arabidopsis TERMINAL FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes. Plant Cell Physiol 44(6):555–564

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Guo Y, Ohta M, Xiong LM, Stevenson B, Zhu JK (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21(11):2692–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XN et al (2015) Wheat plants exposed to winter warming are more susceptible to low temperature stress in the spring. Plant Growth Regul 77(1):11–19

    Article  CAS  Google Scholar 

  • Lijavetzky D, Carbonero P, Vicente-Carbajosa J (2003) Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol Biol 3:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao J, Zhang YC, Sang Y, Li QH, Yang HQ (2005) A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci USA 102(34):12270–12275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Papi M, Sabatini S, Altamura MM, Hennig L, Schafer E, Costantino P, Vittorioso P (2002) Inactivation of the phloem-specific Dof zinc finger gene DAG1 affects response to light and integrity of the testa of Arabidopsis seeds. Plant Physiol 128(2):411–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce RS (1999) Molecular analysis of acclimation to cold. Plant Growth Regul 29(1–2):47–76

    Article  CAS  Google Scholar 

  • Saadia A et al (2004) Quantitative proteomics study on Lsi1 in regulation of rice (Oryza sativa L.) cold resistance. Plant Growth Regul 78(3):307–323

    Google Scholar 

  • Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor MI, Gershenzon J, Strnad M, Szopa J et al (2006) DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J 47(1):10–24

    Article  CAS  PubMed  Google Scholar 

  • Skirycz A, Radziejwoski A, Busch W, Hannah MA, Czeszejko J, Kwasniewski M, Zanor MI, Lohmann JU, De Veylder L, Witt I et al (2008) The DOF transcription factor OBP1 is involved in cell cycle regulation in Arabidopsis thaliana. Plant J 56(5):779–792

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Lopez P (2005) Long-range signalling in plant reproductive development. Int J Dev Biol 49(5–6):761–771

    Article  CAS  PubMed  Google Scholar 

  • Sysoyeva MI et al (2005) Temperature drop as a tool for cold tolerance increment in plants. Plant Growth Regul 46(2):189–191

    Article  CAS  Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troll W, Lindsley J (1955) A photometric method for the determination of proline. J Biol Chem 215(2):655–660

    CAS  PubMed  Google Scholar 

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303(5660):1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Wang HW, Zhang B, Hao YJ, Huang J, Tian AG, Liao Y, Zhang JS, Chen SY (2007) The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J 52(4):716–729

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Cufr CA, Denzel MA, Neff MM (2005) The Dof transcription factor OBP3 modulates phytochrome and cryptochrome signaling in Arabidopsis. Plant Cell 17(2):475–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei PC, Tan F, Gao XQ, Zhang XQ, Wang GQ, Xu H, Li LJ, Chen J, Wang XC (2010) Overexpression of AtDOF4.7, an Arabidopsis DOF family transcription factor, induces floral organ abscission deficiency in Arabidopsis. Plant Physiol 153(3):1031–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu DY et al (2015) LcMKK, a novel group A mitogen-activated protein kinase kinase gene in Lycium chinense, confers dehydration and drought tolerance in transgenic tobacco via scavenging ROS and modulating expression of stress-responsive genes. Plant Growth Regul 76(3):269–279

    Article  CAS  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23(9):893–902

    Article  Google Scholar 

  • Xiong L, Ishitani M, Lee H, Zhu JK (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13(9):2063–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto MP, Onodera Y, Touno SM, Takaiwa F (2006) Synergism between RPBF Dof and RISBZ1 bZIP activators in the regulation of rice seed expression genes. Plant Physiol 141(4):1694–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa S, Schmidt RJ (1999) Diversity and similarity among recognition sequences of Dof transcription factors. Plant J 17(2):209–214

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Sheen J (1998) Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 10(1):75–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JH, Shi HZ, Lee BH, Damsz B, Cheng S, Stirm V, Zhu JK, Hasegawa PM, Bressan RA (2004) An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci U S A 101(26):9873–9878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Su Zhou University research platform open topic (2014YKF03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbao Dai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Dai, H. Brassica napus Cycling Dof Factor1 (BnCDF1) is involved in flowering time and freezing tolerance. Plant Growth Regul 80, 315–322 (2016). https://doi.org/10.1007/s10725-016-0168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0168-9

Keywords

Navigation